
Waiting period from diagnosisfor mortgage insurance issued tocancer survivors

Antoine Soetewey

Thesis submitted in partial fulfillment of the requirements for
the Degree of Doctor of Sciences

September, 2024

Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA)
Louvain Institute of Data Analysis and Modeling in Economics and

Statistics (LIDAM)
UCLouvain, Louvain-la-Neuve, Belgium

Thesis Committee:

Pr. Catherine Legrand Supervisor UCLouvain/ISBA/LIDAM, Belgium
Pr. Michel Denuit Supervisor UCLouvain/ISBA/LIDAM, Belgium
Dr. Geert Silversmit Advisor Belgian Cancer Registry, Belgium
Pr. Christian Hafner President UCLouvain/ISBA/LIDAM, Belgium
Pr. Donatien Hainaut Secretary UCLouvain/ISBA/LIDAM, Belgium
Pr. Roch Giorgi Member Aix-Marseille Université, France
Pr. Philippe-Jean Bousquet Member Collecteur Analyseur de Données, France



Waiting period from diagnosis for mortgage insurance is-
sued to cancer survivors
by Antoine Soetewey

© Antoine Soetewey 2024
ISBA/LIDAM
UCLouvain
Voie du Roman Pays, 20
1348 Louvain-la-Neuve
Belgium



“You can’t connect the dots looking
forward; you can only connect them

looking backwards. So you have to trust
that the dots will somehow connect in

your future.”
(STEVE JOBS)
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Introduction 1
Property loans are often accompanied with mortgage insurance that pays the balance
of the loan if the mortgagor dies. Coverage is usually awarded in the form of term
insurance with decreasing sum insured, with the amount of death benefit diminishing
as the debt decreases. This is common practice in Belgium, with about 170,000 new
mortgage loans per year, mainly contracted by young adults acquiring their first
family house (statistics from the Belgian Individual Credit Register indicate that 42%
of new mortgage loans in 2023 were contracted by borrowers younger than 35 years
and about 71% were granted to borrowers younger than 45 years (Centrale des Crédits
aux Particuliers, 2024)).

Based on answers to a health questionnaire, insurers evaluate applicant’s health
status. As with any other term life insurance product, applicants with poor health
conditions may be denied insurance or charged increased amounts of premium com-
pared to standard conditions. In extreme cases, this may prevent them from accessing
property (in case of a house loan) or develop their business project (in case of a
professional loan). It is normal that, like any other applicants, clients who have had
cancer in the past must fill in a health questionnaire at the time of the application for
a loan. However, the problem comes from the fact that, although people who have
survived cancer are not particularly in poor health at the time of application, they
are still often penalized because of their past medical history. Moreover, filling such
health questionnaires may create frustration for patients having survived cancer and
which was diagnosed many years ago. Having repeatedly to answer questions related
to this disease has psychological consequences and being charged higher premiums
or denied coverage, based solely on their medical history rather than their actual
state of health, generates a feeling of discrimination (Massart, 2018). This is often
felt as a double penalty by cancer survivors. For this reason, several EU countries
passed laws to ease access to mortgage insurance for long-term disease survivors.
This materializes into the “right to be forgotten” adopted in several EU member states,
granting access to insurance after a waiting period of at most 10 years starting at the
end of the successful therapeutic protocol.

Combining concepts from biostatistics and actuarial sciences, there are three
topics that dominate the thesis. The first one is related to the right to be forgotten in
insurance. In particular, the aim is to develop a method to adequately estimate the
threshold after which cancer patients can be considered as cured. For some types of
cancer, survivors actually have a chance of survival comparable to that of the general
population only after a few years after diagnosis, or pose a moderately increased risk
and could therefore be covered in the event of death. This involves measuring and
quantifying the potential excess mortality so that the premiums claimed reflect the
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1.1. THE RIGHT TO BE FORGOTTEN

risk in terms of financial services. This topic has been studied in different contexts
in the literature. Our contribution is that the right to be forgotten starting from
the date of diagnosis, instead of the date of the end of the therapeutic treatment,
is presented. Indeed, to avoid disputes in case of death due to potentially unclear
definitions of a successful treatment, a waiting period starting from the diagnosis is
promoted. The second dominant topic of the thesis is to find a proper way to adapt the
actuarial pricing of life insurance products to each category of risk, disease, person,
etc. This problem is tackled by concentrating on pricing insurance covers on a market
where such a right has been implemented. The third topic focuses on computing the
incidence risk (i.e., the risk of developing cancer for a healthy individual), and the
number of years of life lost due to cancer at different ages at diagnosis and given that
the patient survived some years after diagnosis. This subject has been documented
extensively in the biostatistical and epidemiological literature. Nonetheless, most
studies refer to the number of years of life lost (due to a specific disease or condition)
at the time of diagnosis, without taking the time survived since diagnosis into account.
This is a major difference, given that the time since diagnosis is known to have an
influence on survival for cancer patients.

To better clarify the three problems in the focus of the thesis, an introduction
of the right be forgotten in Belgium and other European countries is needed. This
is the goal of the next section. Next, a section is dedicated to each of the chapters,
summarizing the main results and contributions to the literature. An overview of
the key concepts covered in this thesis is then presented. This is done in sufficient
details and generality at the same time to grasp a sound understanding of the tools
used in the present thesis while avoiding too advanced methodological developments.
Finally, the introduction ends with a brief presentation of the data that will be used
throughout this thesis, and the incidence trends between 2004 and 2020 in Belgium
for the cancers of interest.

1.1 The right to be forgotten

The first initiative dates back to 2007, when France launched the AERAS Convention
(AERAS is the acronym for “s’Assurer et Emprunter avec un Risque Aggravé de Santé”
in French, which could be translated as “insuring and borrowing with an aggravated
health risk”). This agreement, signed by the public authorities, banking and insurance
sectors, and patients’ and consumers’ associations purposed to allow people who
survived a given amount of years after their cancer diagnosis or people suffering
certain chronic diseases to access insurance in case of death or disability, as well as
to guaranteed income insurance. Faced with a similar situation, this lead Belgian
authorities to create the Bureau du suivi de la tarification assurance solde restant dû
(www.bureaudusuivi.be) – Opvolgingsbureau voor de tarifering schuldsaldoverzek-
ering (www.opvolgingsbureau.be) (which could be translated literally as the
“Outstanding balance insurance pricing monitoring office”) in 2014, in application of
the law on insurance. This body reviews health questionnaires used by insurance
companies selling mortgage insurance in Belgium and checks whether the proposed
premium surcharges or cover denials are justified for impaired lives.

Considering long-term cancer survivors, France established in 2016 a “droit à
l’oubli” (translated literally as “right to be forgotten” (RTBF) in the remainder of this
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text), that is, the right for an insurance applicant not to declare a previous cancer
after a period of 10 years starting at the end of the therapeutic protocol. This 10-
year waiting period is reduced to 5 years if the applicant suffered cancer before
the age of 18. These periods of 10 and 5 years start from the date of the end of
the therapeutic treatment, in absence of relapse within this period. The 10-year
length of the waiting period has been further shortened for several types of cancer
(and other non cancer related pathologies), as detailed in the AERAS Convention
(see www.aeras-infos.fr/cms/sites/aeras/accueil.html) with reduced
duration after which survivors have access to the right to be forgotten. Once this
period after a successful treatment has elapsed, cancer survivors are not obliged to
declare their pathology to insurers. If they choose to disclose their health history,
insurance companies cannot take the condition into account in risk assessment and
cannot refuse the insurance, nor impose a premium surcharge because of the pathology.
In June 2022, France has led the way by reducing the RTBF period to 5 years for
insurance contracts occurring before the borrower’s 71𝑠𝑡 birthday. The same year
in October, France went further in protecting cancer survivors against financial
discrimination, by abandoning medical questionnaires for any loan with a maximum
amount of 200,000€ per person and which ends before the age of 60, by imposing no
extra premium or exclusion of cover for HIV under certain criteria, and by reducing
the waiting period for hepatitis C.

In Belgium, the RTBF entered the insurance law in April 2019, making Belgium
the second European country to adopt it after France. At that time, the waiting
period was set to 10 years after successful treatment for all cancers, and 5 years if the
diagnosis occurred before the age of 18. Based to a large extent on the reference tables
published in the AERAS Convention, a Royal Decree dated May 26, 2019 lists certain
types of cancer for which, depending upon entry criteria (such as cancer stage or age),
the standard waiting period of 10 years from the end of active treatment is reduced.
The RTBF has recently been adapted in Belgium, again following similar changes in
France. As from November 2022, the standard waiting period opening the RTBF has
been shortened, for all cancers, from 10 years to 8 years after successful treatment.
This waiting period is reduced to 5 years if the insurance applicant was diagnosed
of cancer before the age of 21. Since November 2022, this also applies to guaranteed
income insurance for all workers, regardless of employment status. As from January
2025, the RTBF will be reduced to 5 years after the end of the therapeutic protocol for
all cancer survivors, and reference grids will also be implemented for chronic diseases
in addition to cancer. Shorter waiting periods for specific pathologies are still being
discussed. Additionally, every two years, the Belgian Healthcare Knowledge Centre
(KCE) evaluates the reference grid in the light of medical progress and available
scientific data on the pathologies it covers. The KCE then proposes an adaptation of
the reference grid, which is communicated to the Bureau du suivi de la tarification.
The latter forwards the proposal, together with its opinion, to the Minister of Finance
and the Minister of Social Affairs and Public Health. The reference grid may then be
modified if necessary. The reader is referred to the KCE’s report (2022) for a more
comprehensive overview of the evolution of the RTBF in Belgium and the mandate of
the KCE in the Belgian legislation with regards to the RTBF.

The RTBF has now also been installed through an agreement in Luxembourg, and
through a legal framework in The Netherlands, Portugal, Romania, and more recently
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in Italy, Spain and Cyprus. Established in 2020 in Luxembourg, the agreement applies
exclusively to the outstanding balance of an insurance policy for the acquisition of a
principal residence or business premises, up to a maximum amount of 1,000,000€. It
does not apply to the acquisition of a second home or to rental investments. Established
in 2021 in The Netherlands, the law applies to life insurance for applicants under
the age of 71. The decree establishes that it is no longer allowed to ask whether
someone has already had cancer when, in the opinion of the health care provider who
treated the applicant, there has been a complete remission and no recurrence has
been diagnosed for an uninterrupted period of 10 years, starting from the moment
when complete remission was established. The decree also states that if the candidate
is aged under 21 at the time of cancer diagnosis, the period is reduced to 5 years.
Established in 2022 in Portugal, the law gives people who have overcome serious
illnesses such as cancer, HIV and diabetes the right to be forgotten when taking
out a mortgage, consumer credit or insurance (whether compulsory or optional)
linked to these loans, provided that 10 years have elapsed without interruption since
the end of the therapeutic protocol, and 5 years have elapsed since the end of the
therapeutic protocol in the case the illness was diagnosed before the age of 21. Also
established in 2022, in Romania the right to be forgotten applies to adults 5 years
after the end of treatment in case the cancer diagnosis occurred before the age of
18 years, and after 7 years following the end of their treatment and without any
evidence of relapse or recurrence in case the cancer diagnosis occurred after the age
of 18 years. Established in 2023 in Spain, the right to be forgotten in the field of
insurance and banking products for cancer patients becomes effective once 5 years
have elapsed since the end of treatment without relapse, regardless of age at diagnosis.
The same year, Cyprus has followed by approving a law that states that no insurance
company will be able to reject an application made by a cancer survivor if 10 years or
more have passed since the completion of their treatment, or 5 years in the case of
cancer diagnosed before the age of 21. Late 2023, Italy passed a law allowing cancer
survivors not to share information about their previous condition with financial
institutions, or adoption authorities, provided that 10 years had passed since the
successful end of their treatment, or 5 years in the case of cancer diagnosed before the
age of 21. Finally, Ireland, Denmark, Greece and Finland have adopted non-legislative
frameworks which take the form of code of conduct and self-regulatory practices.
Figure 1.1 shows the status of the RTBF in the EU/EEA as of February 2024.

Besides the implementation of the RTBF in these countries, it is being debated and
advocated for at the European level to expand to the other EU countries as well. There
are some ongoing discussions between Insurance Europe, the European Commission
and the European Parliament on a possible EU-wide RTBF for cancer survivors. See
for instance Scocca and Meunier (2020, 2022), as well as to “Survivorship challenge 3.4:
Lack of knowledge of the stigma associated with cancer” listed in Lawler et al. (2021)
purposing to take advantage of the existing legal framework in several EU member
countries to investigate a pan-European legal framework on access to financial services
for cancer survivors. Moreover, various European initiatives such as the Europe’s
Beating Cancer Plan, Horizon Mission on Cancer and The Consumer Credit Directive
have led to the creation of recommendations aimed at giving consumers who survived
cancer equal access to financial services.
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Figure 1.1: Status of the right to be forgotten in the EU/EEA as of April 2024. Source: European
Initiative on Ending Discrimination against Cancer Survivors

1.2 Summary of the chapters

The manuscript is divided into several chapters. The main findings and contributions
of each of the chapters are summarized below.

Chapter 2: Waiting period from diagnosis for mortgage insurance issued to
cancer survivors This chapter, which is inspired from our first paper (Soetewey
et al., 2021), focuses on the application of several tools from biostatistics to assess
the length of the waiting period opening the right to be forgotten. Although the
establishment of such a right to be forgotten in several European countries and
possibly at the European level is clearly an improvement for cancer survivors, it is
shown, using data from the Belgian Cancer Registry, that there is room for further
reducing the waiting period for some cancer types. In particular, the chapter aims
to show that for some types of cancer (with melanoma and thyroid as examples),
survivors actually have a survival comparable to that of the general population,
that is, excess mortality is negligible. It is also demonstrated that patients having
survived long enough to some types of cancer (still with melanoma and thyroid as
examples) can access life insurance market at standard insurance rates, contrarily to
the common belief within the actuarial community. Moreover, there remains some
ambiguity about what is considered as treatment and thus what marks the end of the
therapeutic protocol. Therefore, a waiting period starting at diagnosis rather than at
the end of the therapeutic treatment protocol is promoted in order to avoid disputes
in case of death. Results appear to be particularly encouraging as they suggest a
considerable shortening of the 10-year waiting period for some types of cancer.
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Chapter 3: Semi-Markov modeling for cancer insurance This chapter, which
is based on our second paper (Soetewey et al., 2022), focuses on insurance covers
on a market where a right to be forgotten has been implemented. More precisely,
the products considered here are specifically related to the waiting period opening
the right to be forgotten, with temporary covers restricted to that period to fill the
gap in coverage on a market where such a right has been implemented. First, stand-
alone products are studied, including cancer insurance with lump sum payment at
diagnosis, or temporary life annuity starting at diagnosis. In the latter case, periodic
payments may correspond to insurance premiums of another product, or even to loan
reimbursement. Then, riders included in a package are discussed. Term insurance
with accelerated death benefit paid as a lump sum at diagnosis or as a temporary
life annuity starting at diagnosis are considered. Finally, products granting access to
some specific insurance cover (such as mortgage insurance) during the waiting period
opening the right to be forgotten are discussed. This is especially important at young
age, to guarantee access to property and home ownership (in case of house loan) and
to entrepreneurship (in case of professional loan) to cancer patients whose health
status has improved but who cannot benefit from the right to be forgotten because
the waiting period is not exhausted. The 3-state (healthy–ill–dead) Semi-Markov
hierarchical model developed in Denuit et al. (2019) for long-term care insurance
is adopted here for actuarial calculations. Semi-Markov transition intensities are
estimated from cancer cases recorded by the Belgian Cancer Registry. Our proposals
are illustrated through three cancers with clear differences in terms of incidence,
survival after diagnosis, and waiting periods defined by Royal Decree: (i) melanoma,
(ii) thyroid and (iii) female breast cancers. The obtained results suggest that a new
offer could develop, targeting the particular needs of cancer patients.

Chapter 4: Health indices for disease incidence risk and duration in the Semi–
Markov setting This chapter, which is inspired from our third paper (Soetewey
et al., 2024), focuses on illustrating how common health indices (with disease incidence
risk and years of life lost as examples) can be estimated based on a Semi-Markov
3-state illness-death model using cancer registry data. The main advantage of comput-
ing these quantities in a Semi-Markov context is that it allows to take into account the
number of years a patient survived after the diagnosis. To the best of our knowledge,
most studies refer to the number of years of life lost at the time of diagnosis, without
taking the time survived since diagnosis into consideration. This is a major difference,
given that time survived since diagnosis is known to have an influence on survival for
cancer patients. Based on 161,007 melanoma, thyroid and female breast cancer cases
recorded by the Belgian Cancer Registry, it appears that the probabilities of being
diagnosed with cancer over the next 20 years for a healthy individual remain rather
low for melanoma and thyroid cancers for both sexes, but considerably increases
with age for female breast cancer. Results also suggest that, for female breast cancer,
the number of years of life lost before the age of 70 years due to cancer is highest
when diagnosed at young ages and then decreases with age at diagnosis, whereas
for melanoma and thyroid cancers, it peaks when diagnosed at later ages (between
35 and 55 years depending on the cancer and sex). Whether the decrease with age
at diagnosis is linked to a real decrease of the number of years of life lost or simply
due to the fact that the younger the patient at diagnosis, the more years he or she
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can still loose before the age of 70 years will be discussed too. It also turns out that
the number of years of life lost before the age of 70 due to cancer is larger for men
than for women for both melanoma and thyroid cancers. Last, it is found that, for
melanoma and thyroid cancer patients diagnosed between the age of 20 and 70 years,
once they have survived their cancer for 10 years, the number of years of life lost
before the age of 70 due to cancer remains below one year. This indicates that, up to
the age of 70 years, these patients lose a limited number of years of life due to cancer
compared to the general population.

Chapter 5: Right to be forgotten for mortgage insurance issued to cancer
survivors: Critical assessment and new proposal This chapter, which is based
on our fourth paper (Soetewey et al., 2023), is a follow-up of Chapter 2. In Chapter 2, it
has been proposed to determine the waiting period opening the right to be forgotten
as the time after diagnosis needed for the premium to revert back to some acceptable
level, expressed by means of regulatory life tables. However, this approach requires
data up to 30 years after diagnosis (10 years of standard right to be forgotten plus the
typical duration of the loan), or extrapolating the results up to that time horizon. In
this chapter, it is shown that when survival statistics are only available over a shorter
duration, it turns out that the length of the resulting waiting period opening the right
to be forgotten may strongly depend on the extrapolation method. This problem, not
arising from the method proposed in Chapter 2 but coming from the limited follow-
up period for patients in some cancer registries (including the Belgian one), is not
acceptable in the context of the right to be forgotten. This is why an alternativemethod
is proposed here, based on a constraint imposed to the premium. This constraint is
then transposed into a target on the conditional observed survival probabilities. The
length of the waiting period opening the right to be forgotten can then be derived
from the comparison of the conditional one-year survival probabilities of cancer
patients with the corresponding probabilities at general population level. The main
advantage is that the time from which the right to be forgotten can be exercised can
be estimated from the available data only, without the need to extrapolate mortality
rates beyond 10 years. For the sake of robustness, results obtained with the proposed
approach are compared to results obtained with Kaplan-Meier estimate taken as a
nonparametric reference. Furthermore, while cancer stage at diagnosis has not been
taken into account in Chapter 2, the impact of the stage of the tumor at diagnosis on
waiting periods is investigated in this chapter.

Chapter 6: Comparative analysis and recommendations for the right to be
forgotten in cancer research This chapter synthesizes the findings from a com-
parative analysis of the various methods applied to a unified dataset to formulate
recommendations for implementing the right to be forgotten for cancer patients in the
context of insurance. More precisely, it introduces the incidence risk for melanoma,
thyroid and female breast cancer to showcase the potential risk and burden associated
to these cancers. It then presents the waiting periods opening the right to be forgotten,
and highlights the necessity of tailored waiting periods based on cancer type rather
than a one-size-fits-all approach. An insurance product targeting specifically cancer
patients who cannot yet benefit from the right to be forgotten is also illustrated.
The chapter ends with practical recommendations addressed to policymakers and
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interested stakeholders, concerning the right to be forgotten in the realm of insurance.

Chapter 7: Conclusion In the last chapter, contributions of this manuscript are
briefly summarized. Furthermore, some problems that could not be solved during
the thesis and which possibly already appeared in the previous chapters are listed.
Some general questions that arose while working on the topics from the preceding
chapters, and whose solution might either have important practical or conceptual
implications for both biostatisticians and actuaries, are then proposed.

1.3 Prerequisites

Before delving into the different chapters of this PhD thesis, it is recommended
for the reader to possess a foundational understanding of several key concepts and
methodologies in survival analysis and actuarial sciences. These prerequisites are
carefully curated to ensure a seamless comprehension of the intricate topics covered
in the thesis.

For more comprehensive guides related to survival analysis, the reader is referred
to Therneau (1997); Klein et al. (2003); Kalbfleisch and Prentice (2011); Andersen et al.
(2012); Cox (2018); Legrand (2021) and Collett (2023). For a more applied outlook, the
reader is redirected to Kleinbaum and Klein (1996); Allison (2010) and Moore (2016).

For more resources about health insurance and actuarial sciences in general, the
reader is redirected to Bartleson (1968); O’Grady (1988); Bowers (1997); Black and
Skipper (2000); Gerber (2013); Pitacco (2014); Promislow (2014) and Dickson et al.
(2019). For a more applied perspective, see e.g., Ruckman and Francis (2005) and
Charpentier (2014).

1.3.1 Survival analysis

Survival analysis, also known as time-to-event analysis or duration analysis, is a
branch of statistics aiming at analyzing the duration of time from a well-defined time
origin until the occurrence of some particular event or end-point. In other words, we
are interested in a certain event and we would like to analyze the time until the event
happens (referred to as survival time).

Although survival analysis is rooted in medical and public health applications
(with, for example, the time to death), it is now used in many domains. For example,
one may also be interested in the time until:

■ an unemployed person finds a job,

■ a citizen is being arrested again after having been released from jail,

■ a woman becomes pregnant for the first time,

■ a machine breaks down,

■ a company goes bankrupt,

■ a customer buys a new product or stops its current subscription,

■ a letter is delivered,
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■ a taxi picks up the passenger after having called the taxi company,

■ an employee leaves the company,

■ etc.

As it can be seen, the event of interest does not necessarily have to be the death or the
occurrence of a disease, but in all situations we are interested in analyzing the time
until a specific event occurs. Note that several of these examples are clearly example
of survival time with a cure fraction. This notion of cure will be defined later on, in
Section 1.3.6.

Survival data requires a special set of statistical methods for three main reasons:

1. Survival times are always positive. The time until an event of interest occurs
cannot be less than 0. Moreover, the distribution of survival times is generally
not symmetric and tend to be positively skewed.

2. Different measures are of interest depending on the research question and the
context. For instance, one could be interested in knowing (i) the probability
that a cancer patient survives longer than 5 years after diagnosis, (ii) the typical
waiting time for a cab to arrive after having called the taxi company, or, (iii) out
of 100 unemployed people, how many are expected to have a job again after 2
months of unemployment.

3. Censoring is almost always an issue. When the event occurred before the end
of the study, the survival time is known. However, for some individuals, the
event is not yet observed at the end of the study. This results in (right) censored
data, which can be seen, in some sense, as a type of missing data because the
exact survival time for these individuals is missing.

For completeness, the different types of censoring and the concept of truncation are
presented in the next subsection.

1.3.2 Censoring and truncation

We distinguish between three types of censoring; right, left and interval-censoring.

Right-censoring When the event is not yet observed at the end of the study (i.e.,
the real survival time is greater than the observed duration), this is referred to as
right-censoring. There are three common types of right-censoring (Geskus, 2015); (i)
administrative censoring, (ii) lost to follow-up and (iii) competing risk, and two less
common; (i) type I and (ii) type II. The three most common types of right-censoring are
detailed below, while we refer the interested reader to Legrand (2021) for a discussion
on the two less common types of right-censoring.

■ Administrative censoring Suppose that we study the time from diagnosis until
death for a cohort of cancer patients. Luckily, some patients will not die before
the end of the study. Patients still alive at the end of follow-up for the analysis
are referred to as administrative censoring.
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■ Lost to follow-up Individuals are considered as lost to follow-up when they
stopped being under observation before the end of follow-up for the analysis
and before the event occurred. This can happen, for instance, when a patient
withdraws from the study or moves to another country.

■ Competing risk Sometimes, another event occurs before the event of interest
which prevents it from ever happening, or at least modifies the risk of the event
of interest to occur. The most straightforward example is when a cancer patient
dies from a car accident.

Left-censoring Left-censoring occurs if a participant is entered into the study
when the event of interest occurred prior to study entry but it is not known when
exactly.

Interval-censoring Interval-censoring implies that the event occurred within a
time interval (between two known dates, two visits, etc.); the exact moment of occur-
rence is not known.

In all situations above, survival time is not fully observed for all individuals. The goal
of survival analysis is of course to analyze all available data, including information
about censored patients. Note that an important underlying assumption for most
standard statistical methods in survival analysis is that censoring is independent of the
occurrence of events. This is usually referred to as independent or non-informative
censoring, and means that censored subjects have the same survival prospects as
subjects who are not censored and who continue to be followed. Most of the time,
independent censoring is assumed, as it is the case throughout the present thesis.
Nonetheless, it may happen that survival and censoring times are dependent on each
other, for instance when the event of interest is death and a patient leaves the study
because his or her health has deteriorated or, on the contrary, has greatly improved. In
these situations, survival and censoring times are likely to be positively and negatively
correlated, respectively (Delhelle and Van Keilegom, 2023). Several approaches have
been proposed to deal with dependent censoring in different contexts, see for example,
amongst others, Emoto and Matthews (1990); Rivest and Wells (2001); Deresa and
Van Keilegom (2020); Czado and Van Keilegom (2023) and Deresa and Van Keilegom
(2023).

Another common characteristic of survival data is truncation. In a nutshell,
truncation arises from the fact that some observations are actually absent from the
data. For an individual to be included in a study andmonitored for the event of interest,
he or she must initially fulfill a specific condition. In the context of cancer research
for example, if an individual who has cancer dies without having been diagnosed
with cancer, he or she was obviously not included in the study. Truncation can thus
be seen more as a sampling selection problem. There are two types of truncation: (i)
left and (ii) right truncation. As it is beyond the scope of this introduction, we refer
the reader to Klein et al. (2003) for a discussion on truncation.

Due to the data being asymmetric, and due to the presence of censoring and
truncation, classical analysis tools for continuous variables cannot be used. The aim
of survival analysis is to model and describe survival data in an appropriate way,
taking these particularities into account.
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1.3.3 Common functions in survival analysis

Without going into too much detail, we lay the foundations with the most common
function in survival analysis; the survival function. Two frequent functions which
characterize the distribution of survival times are also presented; the hazard function
and the cumulative hazard function.

1.3.3.1 Survival function

Let 𝑇 be a non-negative continuous random variable, representing the real time until
the event of interest. The survival function 𝑆 (𝑡) is the probability that a randomly
chosen individual is still at risk at time 𝑡 , where 0 ≤ 𝑡 ≤ +∞. For each 𝑡 , it is given by

𝑆 (𝑡) = 𝑃 (𝑇 > 𝑡)
= 1 − 𝑃 (𝑇 ≤ 𝑡)
= 1 − 𝐹 (𝑡)

= 1 −
∫ 𝑡

0
𝑓 (𝑢)d𝑢,

where 𝑓 (·) and 𝐹 (·) are the density and the cumulative distribution functions of 𝑇 ,
respectively.

The survival function 𝑆 (𝑡) is a decreasing function equal to 1 at 𝑡 = 0 (i.e., 𝑆 (0) = 1)
and 0 at 𝑡 = ∞ (i.e., 𝑆 (∞) = 0). Since it is a probability, it takes values in [0, 1]. Figure
1.2 shows an example of a survival function. The survival curve gives the proportion
of individuals (or experimental units) who, as time goes on, have not experienced
the event of interest. As time progresses, events occur, so the proportion who have
not experienced the event decreases. In the context of this thesis where death is the
event of interest, 𝑆 (𝑡) gives the probability that a randomly selected cancer patient
will survive beyond time 𝑡 , or the proportion of cancer patients still alive after time 𝑡 .

1.3.3.2 Hazard function

The hazard function 𝜆(𝑡), or hazard, defines the instantaneous event rate at time 𝑡 for
an individual still at risk at that time. It can be obtained by

𝜆(𝑡) = lim
Δ𝑡→0

𝑃 (𝑡 ≤ 𝑇 < 𝑡 + Δ𝑡 |𝑇 ≥ 𝑡)
Δ𝑡

=
−𝑑
𝑑𝑡

log (𝑆 (𝑡))

=
𝑓 (𝑡)
𝑆 (𝑡) .

The hazard function is a positive function, not necessarily monotone. Since it is a
snapshot of the data at each time point (measuring the proportion of individuals
experiencing the event of interest at that specific moment among those who remain
at risk of the event at that time), it can have many different shapes and is therefore a
useful tool to summarize survival data. In the context of cancer research when death
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Figure 1.2: Example of a survival function 𝑆 (𝑡)

is the event of interest, 𝜆(𝑡) measures the instantaneous risk of dying right after time
𝑡 given the patient is alive at time 𝑡 .

To link the hazard with the survival function; the survival curve represents the
hazard. A steeper slope indicates a higher hazard because events happen more
frequently, reducing the proportion of individuals who have not experienced the
event at a faster rate. On the contrary, a gradual and flatter slope indicates a lower
hazard because events occur less frequently, reducing the proportion of individuals
who have not experiences the event at a slower rate. More formally:

𝑆 (𝑡) = exp
(
−

∫ 𝑡

0
𝜆(𝑢)d𝑢

)
.

1.3.3.3 Cumulative hazard function

The cumulative hazard function Λ(𝑡), which corresponds to the total amount of risk
experienced up to time 𝑡 , is defined as:

Λ(𝑡) = − log (𝑆 (𝑡))

=

∫ 𝑡

0
𝜆(𝑢)d𝑢,

Since the cumulative hazard function is a cumulative measure (based on the proportion
of individuals who have encountered the event up to a given time, relative to the
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total number of individuals who were at risk at the beginning of the study), it is an
increasing function. Moreover, it is defined in [0, +∞]. If the event of interest is death,
then Λ(𝑡) summarizes the risk of death up to time 𝑡 , given that death has not occurred
before 𝑡 (Collett, 2023). Note that the survival function can be expressed in terms of
the cumulative hazard function as follows

𝑆 (𝑡) = exp (−Λ(𝑡)) .

1.3.4 Estimation of the survival function

To estimate the survival function, which provides information about the overall
survival, an estimator that is able to deal with this type of data is needed. Amongst
the different methods for estimating the survival function, the most common one is
the nonparametric Kaplan-Meier (1958) estimator:

𝑆 (𝑡) =
∏
𝑗 :𝑡 𝑗 ≤𝑡

(
1 −

𝑂 𝑗

𝑛 𝑗

)
for each 𝑡 , with 0 < 𝑡1 < 𝑡2 < . . . < 𝑡 𝑗 corresponding to the 𝑗 ordered distinct event
times, 𝑂 𝑗 corresponding to the number of events observed for each distinct event
time 𝑡 𝑗 , and 𝑛 𝑗 corresponding to the remaining number of individuals at risk for each
distinct event time 𝑡 𝑗 .

The advantages of this estimator are that:

■ it is simple and straightforward to use and interpret,

■ it is a nonparametric estimator, so it estimates a survival curve from the data
and no assumptions are made about the shape of the underlying distribution,
and

■ it gives a graphical representation of the survival function(s), useful for illustra-
tive and descriptive purposes.

It is a decreasing step function with a downward jump at each event time. It starts at
1 and reaches 0 if the largest observed survival time corresponds to an event, whereas
it starts at 1 but does not reach 0 if the largest observed survival time is censored.
The principle behind this estimator is that surviving beyond time 𝑡𝑖 implies surviving
beyond time 𝑡𝑖−1 and surviving at time 𝑡𝑖 . Note that an important assumption for
the estimation to hold is the independent censoring, also known as non-informative
censoring. Strictly speaking, the assumptions of independent and non-informative
censoring are not identical. This is however beyond the scope of this introduction.
The interested reader is referred to Lagakos (1979) for more information about the
difference between the two concepts.

In order to estimate a survival function with the Kaplan-Meier estimator, the
following two pieces of information are required:

1. the time until the event of interest or the time until the censoring, and

2. the event status (whether the event happened or not, so whether the subject is
censored or not).
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The survival curve resulting from the Kaplan-Meier estimator can be seen as a de-
scriptive statistic for survival data. This estimator is used to estimate the overall
survival function 𝑆 (𝑡), without distinguishing according to causes of death (Belot
et al., 2019). Several quantities can be obtained from this estimator, such as the median
survival time (i.e., the time beyond which 50% of the individuals in the population
under study have experienced the event of interest) or the probability that a cancer
patient will survive, say, more than 1 or 5 years after diagnosis (known as the 1 and
5-year survival probability). Other important concepts in survival analysis are the
relative and net survival. They are detailed in the next subsection.

1.3.5 Relative and net survival

Information on cause of death is often unavailable or unreliable and not all deaths of
cancer patients can be easily classified as a death due to the cancer of interest or due to
another cause (Percy et al., 1981). Relative survival, which does not require information
on the cause of death, provides ameasure of the excessmortality experienced by cancer
patients by comparing the mortality in the cancer population with the mortality of a
comparable group in the general population. This led the relative survival to become
the standard measure of patient survival for population-based cancer registries, as
shown by its prominence around the world in studies related to cancer survival (Ries
et al., 2002; Coleman et al., 1999; Berrino et al., 1999; Perme et al., 2012, 2016; Pavlič
and Pohar Perme, 2019).

Relative survival models are divided into two types: (i) additive and (ii) multiplica-
tive models. The choice between these models hinges on the underlying assumptions
about the relationship between covariates and excess mortality. Multiplicative models
assume that covariates proportionally affect the excess mortality rate, making them
suitable in contexts where the relative effects of covariates are of primary interest,
such as in actuarial studies and general epidemiology. This is consistent with actuarial
practices, where mortality rates are typically modeled multiplicatively, although ad-
justments (such as the correction of the population hazard) may sometimes be additive
for specific applications involving multiple causes of death. Conversely, additive mod-
els assume that covariates have an additive effect on excess mortality. This approach
is often more appropriate in medical and biological contexts, particularly in cancer
research, where the additive effect of covariates on mortality is more biologically
plausible and aligns better with observed data. Additive models are especially useful
when the baseline hazard is high, and the proportionality assumption of multiplica-
tive models does not hold. For example, in older populations or in studies with high
baseline mortality rates, additive models can more accurately capture the impact of
covariates on survival. Thus, the choice of model should be guided by the specific
context of the study and the nature of the data. For a more detailed discussion, see,
e.g., Buckley (1984); Hakulinen and Tenkanen (1987); Esteve et al. (1990); Bolard et al.
(2001); Dickman et al. (2004) and Pohar and Stare (2006).

Despite the wide acceptance of multiplicative specifications within the actuarial
community, it turns out that additive models are biologically more plausible in cancer
studies and provide a better fit to the data. The additive specification is thus favored
here. In the additive framework, the hazard at time 𝑡 since diagnosis for cancer
patients is decomposed into two additive components: (i) the population hazard
denoted as 𝜆𝑃 (𝑡), and (ii) the excess hazard specific for the cancer of interest denoted

14



1.3. PREREQUISITES

as 𝜆𝐸 (𝑡):

𝜆𝑂 (𝑡) = 𝜆𝑃 (𝑡) + 𝜆𝐸 (𝑡),

where 𝜆𝑂 (𝑡) corresponds to the overall hazard. The population hazard 𝜆𝑃 (𝑡) is usually
estimated on the basis of external data such as population life tables, which are usually
stratified according to the main factors affecting patient survival such as age, gender,
and calendar year.

The relative survival function 𝑟 (𝑡) corresponds to the ratio of the survival function
of the studied group 𝑆 (𝑡) to the survival function of a comparable group (i.e., with
the same characteristics) from the general population 𝑆𝑃 (𝑡) (Dickman et al., 2004):

𝑟 (𝑡) = 𝑆 (𝑡)
𝑆𝑃 (𝑡)

.

Net survival is a measure of patient survival corrected for the effect of other causes of
death (Dickman et al., 2004). It represents the (hypothetical) survival that would be
observed if the only possible cause of death was the disease of interest (Berkson and
Gage, 1950; Schaffar et al., 2017). This allows to compare, among others, treatment
success in different countries without being affected by the differences in the general
population mortality (e.g., different diagnosis years, different countries, etc.). If we
are in a situation where we have information on the cause of death, then estimation
methods for net survival can be estimated in a competing risks framework (a situation
where several risks “compete” to become the actual cause of death). On the other hand,
net survival can also be estimated when the cause of death is unknown by making use
of information from the general population. In this different framework, net survival
can then be estimated using the relative survival method. Since the Belgian Cancer
Registry (BCR) does not collect information on the cause of death, we are in this latter
situation. The net survival function, denoted 𝑆𝑛 (𝑡), is thus derived from the excess
mortality hazard:

𝑆𝑛 (𝑡) = exp
(
−

∫ 𝑡

0
𝜆𝐸 (𝑢)d𝑢

)
.

There are several approaches to estimate net survival of a cohort of patients in a
relative survival framework. Danieli et al. (2012) showed that only two of them pro-
vide unbiased estimates of net survival: (i) the nonparametric Pohar-Perme estimator
(see Perme et al. (2012)) and (ii) the excess risk based on an adjusted modeling on
the demographic variables of the life tables. We use the nonparametric Pohar-Perme
estimator to estimate net survival as recommended by Danieli et al. (2012) for popula-
tion based studies. This estimator addresses biases that arise when using traditional
survival analysis techniques in the presence of competing risks, correcting for overes-
timation of survival probabilities that can occur when the cumulative incidence of
other causes of death is substantial. The Pohar-Perme estimator relies on the concept
of expected survival, which is derived from general population life tables matched to
the study cohort by age, sex, calendar period, and other relevant factors. It compares
the observed survival in the patient cohort to the expected survival in the general
population to isolate the excess mortality attributable to the disease of interest.

Formally, the Pohar-Perme estimator is a weighted version of the Ederer II esti-
mator (Ederer and Heise, 1959) in which observations are weighted by the inverse

15



1.3. PREREQUISITES

probability of survival at each event time (Clerc-Urmes et al., 2014). Let 𝑁𝑖 (𝑡) and
𝑌𝑖 (𝑡) be the counting process and the at-risk process of individual 𝑖 . Now define
𝑁𝑤
𝑖
(𝑡) and 𝑌𝑤

𝑖
(𝑡) as the counting process and the at-risk process of individual 𝑖

weighted by the inverse probability of survival at time 𝑡 : 𝑁𝑤
𝑖
(𝑡) = 𝑁𝑖 (𝑡)/𝑆𝑃𝑖 (𝑡) and

𝑌𝑤
𝑖
(𝑡) = 𝑌𝑖 (𝑡)/𝑆𝑃𝑖 (𝑡), where 𝑆𝑃𝑖 (𝑡) denotes the expected survival of individual 𝑖 at

time 𝑡 . The Pohar-Perme estimator of the net cumulative hazard is defined by

Λ̂𝐸 (𝑡) =
∫ 𝑡

0

∑
𝑖 𝑑𝑁

𝑤
𝑖
(𝑢)∑

𝑖 𝑌
𝑤
𝑖
(𝑢) −

∫ 𝑡

0

∑
𝑖 𝑌

𝑤
𝑖
(𝑢)𝑑Λ𝑃𝑖 (𝑢)∑
𝑖 𝑌

𝑤
𝑖
(𝑢) .

The net survival estimator is then computed as

𝑆𝑛 (𝑡) = exp
(
−Λ̂𝐸 (𝑡)

)
.

For a more detailed discussion of the Pohar-Perme estimator, see Pohar and Stare
(2006), Clerc-Urmes et al. (2014), Pavlič and Perme (2017) and Perme et al. (2012, 2016).

Chapter 2 presents a more detailed explanation, together with illustrations, of the
concepts of relative and net survival.

1.3.6 Cure models and time-to-cure

In survival analysis, a fundamental premise is that if the follow-up period is sufficiently
long, all subjects under examination will experience the event of interest. Essentially,
this assumption posits that all subjects are susceptible to the event. However, in
various fields, this assumption may not hold true. An example in the medical field
is when considering the time to recurrence after treatment for a curable disease;
some patients may be cured and thus not experience a recurrence of the disease.
Similarly, it can be the case in other fields such as economics (e.g., an unemployed
person may never find a new job), engineering (e.g., a machine or device may never
fail), demography (e.g., a woman may never have a child), etc. In such scenarios, the
population includes a subset of individuals who are said to be non-susceptible or who
have been cured for the event of interest. The presence of a fraction of individuals
who will never develop the event of interest (i.e., known as the cure fraction or cure
rate) led to the need for a specific class of survival models which would be able to
accommodate this assumption (Maller and Zhou, 1996). We highlight the four main
motivations behind the development of this new type of model, referred to as cure
model in the statistical literature (Legrand, 2021).

First, as 𝑡 goes to∞, the survival function does not reach 0 and the cumulative haz-
ard function is bounded from above, that is, lim𝑡→∞ 𝑆 (𝑡) > 0 and lim𝑡→∞ Λ(𝑡) < ∞.
In this specific case, the survival function is said to be improper and the cumulative
hazard function is constrained from above, implying that the accumulated instan-
taneous risk of experiencing the event will not reach infinity as the follow-up time
goes to infinity. Visually, the estimated survival function reaches what is called a
long and stable “plateau” (including a large number of right-censored observations
at the level of the sample) after a sufficiently long follow-up period. This happens
because a fraction of the individuals who entered the study will never experience
the event of interest. Second, a new parameter of interest emerges. In the context of
cancer research for instance, when such a cure can indeed be achieved, the benefits
of a new treatment is not only limited to how the treatment helps to postpone death
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or a relapse of the disease, but also what proportion of cancer patients can be con-
sidered statistically cured (Maetani and Gamel, 2013; Legrand and Bertrand, 2019).
Third, the existence of a cure fraction might result in a violation of the proportional
hazard assumption (an important assumption for many standard survival analysis
tools). Fourth, a challenge in survival data analysis arises when there are, at the
same time, a fraction of cured and some censored observations. Without censoring,
individuals are assumed to belong to either a cured or uncured sub-population, but
right-censoring complicates this distinction by making the cure status partially latent.
While the cure status is fully observed for those who experience the event of interest
(they are obviously uncured), the cure status of the right-censored cases cannot be
distinguished as it is not observed for these subjects. Furthermore, standard survival
analysis techniques assume that censored individuals have the same survival pattern
after censoring as non-censored ones. This becomes problematic if censored cases
include both cured and uncured subjects.

Hence, cure models have been formulated to take into account these situations,
and more broadly, to investigate not only the time until the event of interest (the
goal of most classical survival analysis techniques) but also to estimate the share of
the population that will not develop the event (and thus the probability to be cured).
Cure models are particularly suitable for some cancer sites when the event of interest
is death or recurrence. Indeed, for situations where recurrence is the endpoint, if
the treatment is successful, the patient will never suffer a relapse of the cancer. For
situations where death is the endpoint, although it is evident that no one can be
cured of death, cure models are also especially appropriate for less aggressive cancers
such as, among others, the three considered in this thesis because a considerable
percentage of subjects exhibits long-term survival (who are sometimes referred to as
long-term survivors and who can be considered as statistically cured (Lambert, 2007;
Othus et al., 2012; Yilmaz et al., 2013)).

There are two main types of cure models in the literature: (i) mixture cure models
(the most common type, based on the seminal work by Boag (1949) and Berkson
and Gage (1952)) and (ii) non-mixture cure models (Andrei et al., 1996; Chen et al.,
1999; Tsodikov et al., 2003); see Amico and Van Keilegom (2018) for an overview.
In the present thesis, we consider only the family of mixture cure models. In this
approach, the population is considered as a mix of two types of individuals, that is,
(i) the cured subjects who will never develop the event of interest (referred to as
long-term survivors) and (ii) the uncured subjects who, if not censored, will develop
the event of interest (Lambert et al., 2006). We refer the reader to Legrand (2021) for
a detailed discussion on the differences and the link between the two types of cure
models.

The time-to-cure (TTC) is generally referred to as the time after which subjects can
be considered as long-term survivors. Different approaches to define the TTC have
emerged in the literature. In this thesis, we use the TTC as introduced by Boussari
et al. (2018), and defined as the shortest time from which the conditional probability
of being cured at a given time 𝑡 after diagnosis knowing that the patient was alive up
to time 𝑡 is close to 1, that is TTC is the smallest value of 𝑡 such that, for some given
(small) value of 𝜖

𝜋

𝑆 (𝑡) =
𝜋

𝜋 + (1 − 𝜋)𝑆𝑢 (𝑡)
≥ 1 − 𝜖, (1.1)
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where 𝜋 is the proportion of cured patients and 𝑆𝑢 (𝑡) is the survival function of the
uncured population. The main advantage of TTC is that, although the results may
depend on the chosen definition, it is a simple and straightforward indicator to set the
time after which a patient who had cancer should not be penalized anymore when
applying for mortgage insurance.

Chapter 2 presents a more detailed explanation, together with illustrations, of the
concepts of cure models and time-to-cure.

1.3.7 Number of years of life lost

Over the last decade, the number of years of life lost (YLL) became a popular tool
in biostatistics and epidemiology to measure discrepancies in life expectancy or
mortality. The idea behind YLL is to quantify the number of years of life a specific
cohort of patients has lost due, for example, to a given disease, compared to the general
population. This measure, as defined by Andersen (2013) and Andersen et al. (2013),
has the advantage that it is measured on a time metric (usually in years) making
its interpretation easy for policy-makers and meaningful for gauging public health
outcomes (Latouche et al., 2019).

It was first introduced to measure the reduction in life expectancy for a group
of individuals compared to a hypothetical cohort where no one dies before a given
age (Andersen, 2013). However, in most situations, it may seem more natural to
measure the reduction in life expectancy for a group of individuals compared to a
reference population (where some years of life are lost because of some standard or
background mortality rates). In this sense, YLL can be used to estimate the number
of years a specific cohort of patients (cancer patients, for instance) are expected to
lose compared to the general population (i.e., the reference population to which the
cancer cohort is compared). The difference between the life expectancy of the general
population and the one of the considered cohort of patients corresponds to YLL. This
measure is sometimes referred to as excess YLL because it is the number of years
of life patients lose in excess of that seen in the general population. The larger this
measure, the more important the societal burden of the disease or condition.

There are two distinct metrics of YLL within the epidemiological literature. First,
the cohort-based YLL, which measures the total number of years of life lost by an
entire cohort due to a specific disease or condition. This metric is useful for estimating
the overall impact of a given disease or condition on a population, informing resource
allocation, public health priorities, etc. Second, the individual-based YLL, which
quantifies the average number of years of life lost per individual, for those suffering
from a particular disease or condition. This measure helps assessing how a diagnosis
affects the life expectancy of an individual and is useful for evaluating the health
impacts of diseases on a person-by-person basis. While the individual-based YLL
provides an average per person, the cohort-based YLL represents the sum of years of
life lost for a cohort of patients or a group of individuals within a population. Note
that individuals may not necessarily lose some years of life compared to the general
population; they could potentially gain years, as seen with elite athletes for which
survival may be better than that of the general population (Antero-Jacquemin et al.,
2018).

The main advantages of YLL are that (i) it is measured on a time metric (usually
in years), facilitating its interpretation and communication (Baade et al., 2015; Licher
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et al., 2019), (ii) information on the cause of death is not required to estimate it, making
it a practical measure for population-based studies in which the cause of death is
often unavailable or unreliable (Percy et al., 1981), and (iii) it can be computed for any
time horizon and for a comprehensive list of causes of death (see for instance Aragon
et al. (2008) who ranked leading causes of premature death and Chu et al. (2008) who
measured the health impact of several common cancers, both based on YLL). When
applied to cancer patients, on the one hand, the cohort-based YLL represents the
total number of years of life lost by the cancer cohort. This is useful to compare,
for instance, the societal burden of cancer with other diseases or between different
countries. On the other hand, the individual-based YLL can be interpreted as the
average number of years of life lost that a cancer patient experiences from the time
of diagnosis in comparison to an healthy individual of the same age (and possibly sex,
year and other covariates such as ethnicity or socio-economic factors).

In this thesis, it is the individual-based YLL which is chosen and illustrated as
it resonates more in the patient-clinician communication. Formally, the individual-
based YLL in a certain time interval is the sum of life years lost due to (i) population
mortality (governed by mortality rates in that reference population) and due to (ii) the
cancer of interest. This quantity can be computed based on the difference between
the estimated survival observed in the general population and the one observed in
the cohort of cancer patients.

Chapter 4 presents a more detailed discussion, together with illustrations, of the
concept of YLL.

1.3.8 Multi-state models

In research where the outcome of interest is survival from the time origin to death,
the occurrence of other non-fatal incidents throughout the follow-up period could
offer additional insights into the underlying mortality process. The succession of
intermediary events defines an event history, which can be taken into account to
increase knowledge of a biological process resulting to death. Such data and mecha-
nisms can be analyzed using multi-state models (MSM) (Collett, 2023). More generally,
MSM are a powerful statistical approach to study the evolution of individuals be-
tween several “states” (see Andersen et al. (2012) and Hougaard (1999) for a general
review). MSM can be seen as an extension of classical survival analysis, in which
there are only two states (i.e., alive and dead) and only the transition from being alive
to being dead is considered (De Wreede et al., 2010; Geskus, 2019; Putter et al., 2007).
Unlike classical survival models, MSM are used to model processes which go from
an initial state (for instance “healthy”) to a terminal (also referred to as absorbing)
state (for example “dead”), but where more than two states are considered, some
being transient. Thus, MSM offer a complete and informative representation of the
occurrence of intermediate events on the pathway to some final event, notably via
transition probabilities and transition intensities which govern movements between
the different states depending on the state currently occupied and the time spent in
that state (referred to as the sojourn time) (Andersen and Pohar Perme, 2008; Touraine
et al., 2016).

In this thesis, a 3-state model, assuming that an individual can either be “healthy”,
“ill” (diagnosed with cancer), or “dead” is considered. See Figure 1.3 for a visual
representation of the model, often referred in the literature to as the “(3-state) illness-
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healthy ill

dead

Figure 1.3: Visual representation of the ‘illness-death model’ without recovery for cancer
patients

death model” without recovery. Individuals are initially with no cancer detected, thus
considered as healthy. Then, they may be diagnosed with cancer and die, or they may
die without having been diagnosed with cancer. Note that this 3-state model is, in its
mathematical concept, similar to the well-known SIR model (susceptible – infected –
recovered) in epidemiology (Anderson, 1991; Kermack and McKendrick, 1927). The
difference with our 3-state illness-death model is that a susceptible individual must
go through the infectious state before being recovered, he or she cannot go directly
from “susceptible” to “recovered”. Main motivations for using a MSM are often to
obtain (i) more biological insight into the disease or recovery process of a patient, and
(ii) more accurate predictions than standard models neglecting intermediate states.
Indeed, by incorporating intermediate events, predictions are adjusted in the course
of time, giving more precise information about survival time (De Wreede et al., 2010;
Geskus, 2019).

When considering MSM, the following notions must be distinguished: (1) Markov
and Semi-Markov, and (2) homogeneous and non-homogeneous.

■ Markovian models depict transitions solely based on the current state, disre-
garding previous states.

■ Semi-Markovian models incorporate not only the current state but also the
duration spent in that state.

■ Homogeneous models assume that transitions between states remain constant
over time.

■ Non-homogeneous models allow transitions between states to vary over time.

In the context of cancer research, a homogeneous Markov model assumes the same
mortality regardless of the time elapsed since diagnosis, which contradicts observed
mortality patterns. Therefore, a Semi-Markov model, considering time since diag-
nosis, is preferred. Additionally, as transitions may depend on patient’s age, non-
homogeneous modeling (which accounts for age-dependent transitions), is essential.
Consequently, a non-homogeneous Semi-Markov illness-death model is used in this
thesis to consider both age and time since diagnosis, and thereby enhancing the
precision of our calculations.

Chapter 4 presents a more detailed explanation, together with illustrations, of the
concept of MSM.
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1.3.9 Expected present value

The field of actuarial science plays a crucial role in assessing and managing risks
across various domains. One prominent application of actuarial science in the context
of this thesis is in the realm of mortgage insurance, where actuaries are tasked with
calculating premiums to safeguard lenders against potential default risks associated
with mortgage loans. Mortgage insurance serves as a protective mechanism for
lenders, enabling them to mitigate losses in the event of borrower default.

The actuarial determination of prices for mortgage insurance entails the compu-
tation of statistical measures related to the frequency and amounts of future cash
flows, where premiums represent the anticipated value of future benefit cash flows,
evaluated at present value for a specified interest rate structure. These cash flow
probabilities are contingent upon the survival of the policyholder within the period
of reimbursement. Survival of a policyholder is evaluated thanks to life tables (also
referred to as mortality or actuarial tables), which present how mortality impacts
individuals from the general population across different ages, and also usually strati-
fied by calendar year and sex. Life tables allow to compute several statistics, such as,
among others, the probability that a policyholder alive at age 𝑥 will reach age 𝑥 + 𝑡 ,
denoted 𝑡𝑝𝑥 in the actuarial literature and defined as follows

𝑡𝑝𝑥 =
𝑙𝑥+𝑡
𝑙𝑥

,

with 𝑙𝑥+𝑡 and 𝑙𝑥 corresponding to the number of individuals living at the beginning
of age 𝑥 + 𝑡 and 𝑥 , respectively. Hence, the probability distribution of the future
lifetime for a policyholder of any age can be deduced from life tables. Moreover, the
complementary of 𝑡𝑝𝑥 , that is, the probability that a policyholder alive at age 𝑥 does
not reach age 𝑥 + 𝑡 , denoted 𝑡𝑞𝑥 , is defined as

𝑡𝑞𝑥 = 1 − 𝑡𝑝𝑥

=
𝑙𝑥 − 𝑙𝑥+𝑡

𝑙𝑥
.

Note that the one-year survival probability of an individual aged 𝑥 is conventionally
denoted 𝑝𝑥 , rather than 1𝑝𝑥 . The same convention is applied to its complement, 𝑞𝑥 ,
which denotes the one-year death probability at age 𝑥 (also known as the mortality
rate at age 𝑥). For a more exhaustive coverage of the use and practice of life tables,
the reader is referred to Keyfitz and Caswell (2005).

To make the parallel with survival analysis,

𝑡𝑝𝑥 = exp
(
−

∫ 𝑡

0
𝜇𝑥+𝑠d𝑠

)
,

and

𝑡𝑞𝑥 =

∫ 𝑡

0
𝑠𝑝𝑥𝜇𝑥+𝑠d𝑠,

where 𝜇𝑥+𝑠 is the force of mortality, or hazard, at age 𝑥 + 𝑠 .
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As premiums for a mortgage insurance are usually paid by the insured at different
times (which are referred to as periodic premiums, and which are often paid annually
or monthly), a way to evaluate the current value of these monetary amounts available
at different times is required. An important concept in actuarial sciences, which
is used for this purpose, is the concept of present value. The present value can be
considered as the value, in current money, of a series of cash flows that are available
at different periods of time (Spedicato et al., 2013).

Moreover, when the occurrence of these monetary amounts is uncertain, which
happen when the payments are paid with some given probabilities (contrarily to
contracts purchased by a single premium in which case there is no uncertainty
regarding premium income), it is the expected present value which is of prime interest.
For a good comprehension of the concept of expected present value used in the context
of this thesis, let us define the expected present value from a general point of view.
For this, suppose 𝑖 denoting the (constant) annual interest rate, and 𝑣 = (1 + 𝑖)−1
representing the discount factor. Considering also a series of payments 𝒄 = (𝑐1, . . . , 𝑐𝑘 )
due with probability 𝒑 = (𝑝1, . . . , 𝑝𝑘 ), at times 𝒕 = (𝑡1, . . . , 𝑡𝑘 ) (and with payments at
dates {1, 2, . . . , 𝑘}), the expected present value of those benefits is

EPV =

𝑘∑︁
𝑗=1

𝑐 𝑗𝑝 𝑗

(1 + 𝑖)𝑡 𝑗 (1.2)

=

𝑘∑︁
𝑗=1

𝑣𝑡 𝑗𝑐 𝑗𝑝 𝑗 . (1.3)

Insurances of the person is divided into three main types of insurance products
(Pitacco, 2014):

1. Life insurances and life annuities: benefits depend on survival and death of the
insured;

2. Health insurances: benefits depend on the health status and related financial
consequences, but also on the lifespan of the insured:

■ Sickness insurance covers medical expenses, benefits in the event of tem-
porary or permanent disability, and possibly hospitalization benefits;

■ Accident insurance covers the risks (in particular, but not limited to, the
risks of permanent disability and death) caused by an accident;

■ Disability insurance provides benefits in case of temporary or permanent
disability. There are several types of covers among the disability insurance,
e.g., the income protection (IP), which provides a periodic income to the
policyholder if he or she is prevented from working by sickness or injury;

■ Critical illness insurance (CII), or dread disease (DD) insurance, provides
benefits when the policyholder is diagnosed with a severe disease, as
specified by the policy conditions (commonly; heart attack, cancer, stroke,
and coronary artery diseases requiring surgery). This type of insurance
often constitutes a rider benefit to a basic life policy including death benefit,
and can be used to cover medical expenses or to provide protection against
potential loss of income;
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■ Long-term care insurance (LTCI) provides the insured with financial sup-
port, while he or she needs nursing and/or medical care because of chronic
or long-lasting conditions or ailments.

3. Other insurances of the person: benefits depend on some specific events such
as marriage, birth of a child, education of children, etc.

These insurance products may provide one-year, multi-year, or lifelong covers. For
instance, car insurance (which belongs to the category of accident insurance) is
usually provided by one-year policies, while income protection is typically based on
multi-year policies, and whole life sickness insurance covers the policyholder during
his or her entire lifespan. The duration of the cover defines the insured period (also
referred to as the coverage period), which corresponds to the time interval during
which the insurance cover operates. In principle, a benefit is payable only if the
claim is within the insured period. Nonetheless, restrictions may apply, for instance
when a deferred period is included in the policy. A deferred period, also known as
elimination or probationary period, refers to the period of time following the policy
issue during which the insurance cover cannot be exhausted, and thus, during which
no payment to the policyholder will be made. Moreover, the monetary benefit can
be a lump sum (i.e., a single payment made at a particular time), or it can follow an
annuity-like structure (i.e., periodic payments). In our context of cancer, the benefit
could be a lump sum paid at the time of cancer diagnosis so that the patient can
use the amount to face out-of-pocket expenditures related to treatment, or it could
be monthly payments so that the cancer patient can be compensated for the loss of
income due to cancer. Last but not least, it is worth noting that several insurance
products can be combined to allow more flexibility and, consequently, to fit more
closely to the needs of the policyholder. For a detailed presentation of the possible
combinations of health and life benefits, the reader is referred to Pitacco (2014).

As benefits of most insurances of the person can be represented by a series of
one or more payments whose occurrence, timing and present value are uncertain,
they can be rewritten as particular expressions of Eq. (1.2), with the interest rate and
some assumptions about mortality as the main ingredients for premium calculations
(Spedicato et al., 2013; Pitacco, 2014). The insurance products considered in this thesis
are no exception to the rule.

1.3.9.1 Some life and health insurance products

For a good understanding of the following chapters, we present the expected present
value of the benefits for the life and health insurance products inherent to the ones
covered in this thesis:

■ Term life insurance: a 𝑛-year contract which promises payment of a lump sum
in case the insured dies within 𝑛 years from the issue of the contract

𝐴
1
𝑥 :𝑛 | =

∫ 𝑛

0
(1 + 𝑖)−𝑡 𝑡𝑝𝑥𝜇𝑥+𝑡d𝑡,

with, as we recall, 𝜇𝑥+𝑡 denoting the force of mortality, or hazard, at age 𝑥 + 𝑡 .
Note that the sum insured may be variable (e.g., a decreasing sum insured for a
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mortgage loan). Denoting 𝑐 (𝑡) the amount of benefit in case of death at time 𝑡 ,
the EPV of benefits becomes∫ 𝑛

0
𝑐 (𝑡) (1 + 𝑖)−𝑡 𝑡𝑝𝑥𝜇𝑥+𝑡d𝑡 .

■ Deferred insurance: a 𝑛-year contract which promises payment of a lump sum
provided that the insured dies within 𝑢 years and 𝑢 + 𝑛 years from the issue of
the contract

𝑢 |𝐴
1
𝑥 :𝑛 | =

∫ 𝑢+𝑛

𝑢

(1 + 𝑖)−𝑡 𝑡𝑝𝑥𝜇𝑥+𝑡d𝑡 .

■ Temporary life annuity-due: a 𝑛-year contract which pays an amount at the
beginning of each period until the term of the contract or the death of the
insured, whichever occurs first

¥𝑎𝑥 :𝑛 | =
𝑛−1∑︁
𝑘=0

𝑣𝑘𝑘𝑝𝑥 .

■ Temporary life annuity-immediate: a 𝑛-year contract similar to the temporary
life annuity-due, except that the amount is paid at the end of each period

𝑎𝑥 :𝑛 | =
𝑛∑︁
𝑘=1

𝑣𝑘𝑘𝑝𝑥 .

The concept of expected present value is applied subsequently in the following
chapters. In particular, in Chapter 2, term life insurance is used, with a decreasing
sum insured for a mortgage loan, to compute the waiting period after which standard
premium rates become applicable. In Chapter 3, deferred insurance is used, where
cancer diagnosis, instead of death, has to occur within the insured period to get
the benefit. In the same chapter, temporary life annuity is employed, with benefits
starting at cancer diagnosis instead of death. Moreover, combined products (term
life insurance combined with cancer insurance) and different cover options are also
considered in this chapter. Chapter 5 being a follow-up study of Chapter 2, the same
type of insurance product is considered, that is, term life insurance with a decreasing
sum insured for a mortgage loan.

1.4 Data

The data available from the Belgian Cancer Registry (BCR) are considered throughout
this thesis. The BCR is a national population-based cancer registry collecting data
on all new cancer cases diagnosed in Belgium since the incidence year 2004. Cancer
registration has been made compulsory by law since 2006 in Belgium. The vital status
is derived from linkage with the Belgian Crossroads Bank for Social Security up to
April 11, 2022 and quality controls are performed regularly by BCR, ensuring the
continuity and completeness of cancer registration in the country. Regarding the date
of diagnosis, note that we use the one reported by the BCR, and which is defined as
follows. The incidence date is the date of first microscopic confirmation of the cancer
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(cytology or histopathology). If there is no microscopic confirmation, then the date
of the first hospitalization for cancer is used if available, otherwise the date of the
first consult for the cancer is used, followed by the date of the technical or clinical
investigation leading to the diagnosis of cancer, followed by the first date of treatment
for cancer, followed by the date of death if no other information is available. More
information can be found on the BCR website, at www.kankerregister.org.

To illustrate our work, three cancer types are considered: melanoma (ICD-10
C43), thyroid (ICD-10 C73) and female breast (ICD-10 C50) cancer (only female breast
cancer is considered as there are too few registrations for male breast cancer). These
three cancer sites have been selected to evaluate the proposed methods in different
scenarios. Melanoma and thyroid cancer patients are known to have a limited excess
hazard compared to the general population. The situation for female breast cancer
patients is different with usually a high yearly survival probability in the first years
after the date of diagnosis before it eventually decreases due to late cancer recurrences.
Moreover, it is known that mortality for patients diagnosed with any of these three
cancer types varies with time since diagnosis, yielding appropriate illustrations of
the right to be forgotten. These three cancer sites have also been chosen as they are
relatively common (see the 15 most frequently diagnosed malignancies in Belgium
in Figure 1.4) and they are diagnosed at a relatively young age compared to other
cancers (see the average age at diagnosis by sex in Table 1.1). Figures 1.5-1.7 show the
incidence trend (with 95% confidence intervals) between 2004 and 2020 in Belgium
for the three cancers of interest. Note that the inclusion criteria are as follows: (i) the
patient must resides in Belgium, (ii) the patient must have been diagnosed with an
invasive tumour, and (iii) the patient’s national security number (INSZ/NISS) must be
known (as vital status on patients without INSZ/NISS are unknown). Note also that
the number of cancer diagnoses presented in Figures 1.5-1.7 are lower than the full
incidence in Belgium over the same period, mainly due to the requirement of known
INSZ/NISS. Age at diagnosis was included as a covariate, continuous or categorical
depending on the approach. Age at diagnosis ranges from 20 to 69 years and 3 age
groups were considered: 20-34, 35-49 and 50-69. This classification, which follows
the one used by the BCR (see for instance Belgian Cancer Registry (2020, 2022)), was
chosen to have a sufficiently large number of observations in the youngest age group,
while distinguishing patients who are not necessarily at the same stage in their life
via the two older age groups. A more formal classification based on tools such as
clustering is left for future research.

Last but not least, it is essential to clarify a key distinction regarding the popula-
tions being studied in the present thesis and the populations targeted by the current
framework of the right to be forgotten. Specifically, patients studied herein, selected
solely on the date of diagnosis (e.g., patients who survived 10 years after diagnosis),
inherently differ from those who benefit from the right to be forgotten (e.g., patients
who survived 10 years after the completion of their treatment protocols). The latter
subset of patients typically comprises individuals who have survived cancer diagnosis,
completed their treatments and survived some years after that, potentially indicating
a healthier cohort compared to the cohort of patients who survived some years after
diagnosis without necessarily having completed their treatments. In some extreme
cases, patients who survived some years after the end of their treatments may even
end up being healthier than comparable individuals from the general population. This
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1.4. DATA

Figure 1.4: Incidence (in 2019) and mortality (in 2018) for the 15 most frequently diagnosed
malignancies (excluding non-melanoma skin cancer) by sex in Belgium. Source: Belgian Cancer
Registry (2022)
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Figure 1.5: Incidence trend (with 95% CI) of female breast cancer in Belgium from 2004 to 2020
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Figure 1.6: Incidence trend (with 95% CI) of melanoma cancer in Belgium from 2004 to 2020
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Figure 1.7: Incidence trend (with 95% CI) of thyroid cancer in Belgium from 2004 to 2020
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Cancer Age (in years)
site Men Women
Bladder 73.9 75.1
Breast NA 63.5
Central nervous system 59.2 61.0
Cervix NA 55.2
Colorectal 69.8 71.4
Corpus uteri NA 70.3
Head and neck 65.4 65.9
Kidney 66.3 68.5
Liver 69.7 69.5
Lung 70.3 68.3
Melanoma 63.3 59.8
Oesophaghus 69.3 71.4
Ovary NA 66.5
Prostate 70.2 NA
Pancreas 69.3 71.4
Stomach 70.3 68.7
Thyroid∗ 58.0 51.0

Table 1.1: Average age (in years) at diagnosis by sex for common cancer sites, in 2021 in
Belgium. Note: NA = not reported or not applicable, ∗ = based on 2020. Source: Belgian Cancer
Registry

distinction emphasizes the complexity in extrapolating findings and underscores the
need for nuanced interpretations. Although it is imperative to acknowledge this dis-
parity, the approach of considering patients based on the date of diagnosis regardless
of whether or not they have completed their treatments is conservative, particularly
concerning implications for insurers (as an implicit margin of safety is incorporated).
See also Section 7.2.2 for a discussion on this matter.

The remainder of this thesis is structured as follows. Chapters 2 to 5, with each
chapter inspired from one of our paper, are presented. The final Chapter 7 concludes
the thesis with a general discussion, the questions that remain unanswered and
avenues for future research.
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Waiting period from
diagnosis for mortgage
insurance issued to cancer
survivors

2

This chapter is built on an article carrying the same name as the chapter and published
jointly with Pr. Catherine Legrand, Pr. Michel Denuit and Dr. Geert Silversmit in the
European Actuarial Journal in 2021.

Abstract
Massart (2018) testimonial illustrates the difficulties faced by patients having survived
cancer to access mortgage insurance securing home loan. Data collected by national
registries nevertheless suggest that excess mortality due to some types of cancer
becomes moderate or even negligible after some waiting period. In relation to the
insurance laws passed in France and more recently in Belgium creating a right to be
forgotten for cancer survivors, the present study aims to determine the waiting period
after which standard premium rates become applicable. Compared to the French and
Belgian laws, a waiting period starting at diagnosis (as recorded in national databases)
is favored over a waiting period starting at the end of the therapeutic treatment
protocol. This aims to avoid disputes when a claim is filed. Since diagnosis is often
recorded in the official registry database, as is the case for the Belgian Cancer Registry,
its date is reliable and unquestionable in case of claim. Based on 28,994 melanoma
and thyroid cancer cases recorded by the Belgian Cancer Registry, the length of the
waiting period is assessed with the help of widely-accepted tools from biostatistics,
including relative survival models and time-to-cure indicators. It turns out for instance
that a waiting period of 4 years after diagnosis is enough for 30-year-old thyroid
cancer patients. This appears to be similar to the 3-year period starting at the end of
treatment protocol according to the Belgian law in such a case.

Keywords: Term insurance, impaired lives, cancer, home loan, right to be forgotten.

2.1 Introduction

Property loans are often accompanied with mortgage insurance that pays the balance
of the loan if the mortgagor dies. Coverage is usually awarded in the form of term
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insurance with decreasing sum insured, with the amount of death benefit diminishing
as the debt decreases. This is common practice in Belgium, with about 170,000 new
mortgage loans per year, mainly contracted by young adults acquiring their first
family house (statistics from the Belgian Central Credit Register indicate that 36%
of new mortgage loans in 2017 were contracted by borrowers younger than 35 and
about 68% were granted to borrowers younger than 45).

Based on answers to a health questionnaire, insurers evaluate applicant’s health
status and either impose surcharges in case of impaired lives or refuse to cover the
risk. Filling such health questionnaires may create frustration for patients having
survived cancer occurred many years ago. Having repeatedly to answer questions
related to this disease has psychological consequences and being charged higher
premiums or denied coverage generates a feeling of discrimination (Massart, 2018).
This is often felt as a double penalty by cancer survivors.

The restricted access to insurance cover is often regarded as a barrier to property
and home ownership (in case of house loan) and to entrepreneurship (in case of profes-
sional loan). This lead Belgian authorities to create the Bureau du suivi de la tarification
assurance solde restant dû (www.bureaudusuivi.be) – Opvolgingsbureau voor de
tarifering schuldsaldoverzekering (www.opvolgingsbureau.be) (which could be
translated literally as the “Outstanding balance insurance pricing monitoring office”)
in 2014, in application of the law on insurance. This body reviews health question-
naires used by insurance companies selling mortgage insurance in Belgium and checks
whether the proposed premium surcharges or cover denials are justified for impaired
lives. In 2017, only 16% of the 454 cases submitted by insurance applicants to the
Bureau resulted in improved policy conditions, as it can be read from the annual
report published by the Bureau (2018).

Faced with a similar situation, France established in 2016 a “droit à l’oubli” (trans-
lated literally as “right to be forgotten” in the remainder of this text), that is, the
right for an insurance applicant not to declare a previous cancer after a period of
10 years starting at the end of the therapeutic protocol. This 10-year waiting period
is reduced to 5 years if the applicant suffered cancer before the age of 18. These
periods of 10 and 5 years start from the date of the end of the therapeutic treatment,
in absence of relapse within this period. The 10-year length of the waiting period is
further shortened for several types of cancer (and other non cancer related patholo-
gies), as detailed in the reference grid used in France (known as convention AERAS,
see www.aeras-infos.fr/cms/sites/aeras/accueil.html) with reduced
duration after which survivors have access to the right to be forgotten. After this
period, insurance companies cannot take the pathology into account in risk assess-
ment and cannot refuse the insurance, nor impose a premium surcharge because of
the pathology.

A similar rule has been introduced in Belgium in a law dated April 4, 2019 (pub-
lished in the Official Journal on April 18, 2019) for home-related and professional
mortgage insurance. Despite clear similarities, the right to be forgotten established
in Belgium differs from its French counterpart in an important way. Cancer sur-
vivors must still declare their pathology to insurance companies when applying for
mortgage insurance in Belgium but the decision to grant coverage cannot be based
on this information. Besides this right to not declare (in France) or to declare but
without consequences (in Belgium) a cancer after a given waiting period, the premium
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surcharges may also be prohibited or limited for some cancer types. This has been
implemented in Belgium in a Royal decree published in the Belgian Official Journal
on June 14, 2019.

Although the establishment of such a right to be forgotten in Belgium is clearly an
improvement for cancer survivors, there is most probably room for further reducing
the waiting period for some cancer types. Also, there remains some ambiguity about
what is considered as treatment and thus what marks the end of the therapeutic
protocol. Since all cancer cases (and date of diagnosis) must be recorded in a national
database in Belgium and many other EU countries, defining the start of the waiting
period at the recorded date of diagnosis would certainly avoid endless discussions
when a claim is filed.

There is abundant literature on cancer survival in biostatistical and medical
studies. However, this topic has been the subject of few actuarial papers beyond those
dealing with the assessment of extra mortality after Haberman and Renshaw (1990)
and Renshaw (1988), such as Dodd et al. (2015). Let us briefly discuss some of the
contributions on pricing life insurance specifically for cancer patients that appeared
in the actuarial literature.

Lemaire et al. (2000) considered term life pricing in the presence of a family history
of breast or ovarian cancer. These authors found that while many women with a
family history of breast or ovarian cancer can be accepted at standard rates, women
with two family members with cancer or one first-degree relative with cancer at an
early age show substantial mortality increases (up to 100%) and can thus probably only
be accepted at higher premium rates. Moreover, the authors also found that mortality
increases for women with the BRCA1 or BRCA2 gene mutation (a malfunction which
results in cells more likely to develop additional genetic alterations that can lead to
cancer) reach 150% and can thus possibly only be accepted at a premium rate that
incorporates a severe mortality surcharge.

Using 10-year and 20-year term life products, Shang (2019) calculated the single
premium for breast cancer patients and found that both the average and minimum
premium of the sample cancer patients to be much higher than standard premium,
with the minimum premium still being close to 40% of the sum insured for the least
risky patients. In order to improve the affordability of insurance products for cancer
patients, Shang (2019) also suggested to set a waiting period during which no death
claims will be paid. Since many deaths happen during the first years after diagnosis,
a waiting period reduces the mortality risk and thus the net premium. For instance,
for a 20-year term life product with sum insured 10,000 contracted by a 40-year-old
cancer patient, a waiting period of 1, 2 and 3 years reduces the average premium by,
respectively, 24.85%, 41.48% and 51.05% compared to no waiting period, according to
the calculations by Shang (2019).

The present paper concentrates on the determination of the length of the waiting
period embedded in the right to be forgotten, that is, the minimum duration before
the applicant can be covered at standard premium rate. To this end, we apply several
widely-accepted tools from biostatistics in order to assess excess mortality. We
concentrate on melanoma (ICD-10 C43) and thyroid (ICD-10 C73.9) tumors for the
sake of illustration, leaving other types of cancer for future research. These two types
of cancer (called cancer sites) were selected to get a significant number of incidences
occurring before the age of 40 (mortgage insurance applicants being rather young)
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and as they lead to a fraction of the patients who have a chance of survival close
to cancer-free patients. We were thus looking for cancers with a relatively high
survival probability or high cured fraction. Our analysis is based on 28,994 cancer
cases recorded by the Belgian Cancer Registry (BCR): 19,848 melanoma and 9,146
thyroid tumors, diagnosed between 2004 and 2016.

Based on survival data recorded by the Belgian Cancer Registry, the present paper
aims

■ to show that for some types of cancer (with melanoma and thyroid as examples),
survivors actually have a survival comparable to that of the general population,
that is, excess mortality is negligible.

■ to demonstrate that patients having survived long enough to some types of
cancer (still with melanoma and thyroid as examples) can access life insurance
market at standard insurance rates, contrarily to the common belief within
the actuarial community. The technical waiting period appears to be relatively
short, and shorter compared to the 10-year period specified in the law.

In addition, we promote a waiting period starting at diagnosis rather than at the
end of the therapeutic treatment protocol in order to avoid disputes in case of death.
Indeed, diagnosis is recorded in databases maintained by official bodies within the
European Union. The results obtained in the present study appear to be particularly
encouraging as they suggest a considerable shortening of the 10-year waiting period
for some types of cancer.

The remainder of this paper is structured as follows. Section 2.2 presents the
data used to perform the present study. Sections 2.3 and 2.4 apply several tools from
biostatistics to assess the length of the waiting period, with a focus on the estimation
of the survival of cancer patients in Section 2.3 and concentrating rather on the
time after which we can consider the patients still alive as “cured” in Section 2.4.
Comparisons with standard premium rates based on life tables generally used on the
Belgian market are provided in Section 2.5. The final section (Section 2.6) concludes
the paper with a discussion.

2.2 Data sources

2.2.1 Belgian Cancer Registry (BCR)

The Belgian Cancer Registry (BCR) is a national population-based cancer registry
collecting data on all new cancer diagnoses in Belgium since the incidence year 2004.
For the execution of this main task, BCR relies on its own specific legislation.

In this study, we restrict our analysis to two cancer sites, as explained in the
introductory section. We also limit our analyses to patients from 20 to 69 years old
at time of diagnosis since the right to be forgotten mainly concerns young adults
and active life. A total of 19,848 cases of melanoma and 9,146 cases of thyroid cancer
diagnosed between 2004 and 2016 were followed-up until the 1𝑠𝑡 of July 2018. Follow-
up thus varied from 2 years for patients diagnosed in 2016 to 14 years for those
diagnosed in 2004. Patients without a national security number (INSZ/NISS) were
excluded from our analyses, as we have no vital status on these patients. Patients
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Gender Cancer Age at Lost to Number of cases
site diagnosis follow-up included

Men Melanoma 20-34 3.45% 725
35-49 2.29% 2,360
50-69 1.84% 4,728

Thyroid 20-34 3.30% 273
35-49 2.49% 724
50-69 1.69% 1,301

Women Melanoma 20-34 3.44% 1,863
35-49 1.07% 4,386
50-69 1.04% 5,786

Thyroid 20-34 3.07% 1,204
35-49 2.66% 2,596
50-69 1.67% 3,048

Total 1.87% 28,994

Table 2.1: Numbers of melanoma and thyroid cancer cases diagnosed in Belgium between
2004 and 2016 (BCR data) by gender, site and age group, with percentage of lost to follow-up

lost to follow-up (mostly due to moving abroad) and patients still alive at the end
of the follow-up period were censored. Table 2.1 summarizes the percentage of
lost to follow-up before the 1𝑠𝑡 of July 2018 in each remaining subgroup together
with the number of included cases. The fraction of patients lost to follow-up per
subgroup varied from 1.04% for women with melanoma cancer aged 50-69 to 4.41%
for male melanoma cancer patients aged 20-34. The total fraction of patients lost
to follow-up cases, regardless of gender, site or age group was 1.87%. The analyses
were conducted separately for women and men, representing 65.13% and 34.87% of
all cases respectively, and age at diagnosis was included as a covariate, continuous or
categorical depending on the approach. Age at diagnosis ranges from 20 to 69 years
and 3 age groups were considered: 20-34, 35-49 and 50-69.

2.2.2 General population

In order to estimate excess cancermortality, mortality in the cancer populationmust be
compared to the expectedmortality in a comparable group from the general population.
Belgian population life tables, obtained from Statbel (the Belgian statistical office),
were used to estimate expected mortality in the general population. Gender-specific
mortality rates for the period 2004-2018, by single year of age and per region (Brussels
Capital region, Flanders and Wallonia), have been smoothed in two dimensions
to remove erratic variations. The surface smoothing was performed with the SAS
procedure PROC LOESS using local linear polynomials weighted by population size
(Cleveland et al., 1988; Cleveland and Grosse, 1991; Cleveland et al., 1992).
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Sex Cancer site 𝑆 (𝑡 = 5) 𝐶𝐼95% 𝑆 (𝑡 = 10) 𝐶𝐼95%
Men Melanoma 0.847 (0.838-0.855) 0.774 (0.762-0.786)

Thyroid 0.915 (0.903-0.927) 0.839 (0.820-0.860)
Women Melanoma 0.928 (0.923-0.933) 0.885 (0.878-0.893)

Thyroid 0.961 (0.956-0.966) 0.930 (0.922-0.938)

Table 2.2: Estimated overall survival probabilities by gender and site using the nonparametric
Kaplan-Meier estimator at 5 and 10 years after diagnosis, 𝑆 (𝑡 = 5) and 𝑆 (𝑡 = 10), with their
confidence interval (CI) at 95% level

2.3 Survival of cancer patients

2.3.1 Overall survival

In this paper, we analyze survival (i.e., time to death) for cancer patients beyond diag-
nosis according to a number of covariates summarized into the vector 𝒁 . Specifically,
𝑇 denotes the remaining lifetime at diagnosis. Given 𝒁 = 𝒛, 𝑇 has probability density
function 𝑓 (·|𝒛), distribution function 𝐹 (·|𝒛), survival function 𝑆 (·|𝒛) = 1− 𝐹 (·|𝒛), and
hazard, or force of mortality 𝜆(·|𝒛) = 𝑓 (·|𝒛)/𝑆 (·|𝒛). Contrarily to insurance studies,𝑇
denotes the remaining lifetime since diagnosis and age at diagnosis is included in the
covariates (attained age is thus obtained by summing age at diagnosis and survival
time). This is why we refrain here from complying with the international actuarial
notation for survival probabilities and force of mortality (when computing premiums
in Section 2.5, we will revert back to the actuarial notation).

The nonparametric Kaplan-Meier (1958) estimator is used here to estimate the
overall survival function 𝑆 (·), without distinguishing according to causes of death
(Belot et al., 2019). Estimated overall survival probabilities according to gender and
site (melanoma and thyroid) are detailed in Table 2.2 and illustrated in Figure 2.1. The
10-year overall survival probabilities range from 0.774 (with 95% confidence interval
[0.762 − 0.786]) for men with melanoma cancer to 0.93 (with 95% CI [0.922 − 0.938])
for women with thyroid cancer (see Table 2.2). Remember that overall survival
probabilities take into account all causes of deaths, that is, both cancer and non-
cancer related deaths are considered.

In addition to the two curves for women and men in Figures 2.1 and 2.2, a third
curve including both sexes (denoted “Belgium”) is also drawn for the simple reason
that since December 21, 2012, the European directive on equality between men and
women also applies to outstanding balance insurance, so gender no longer has an
influence on the premiums. Therefore, we believe it is of interest for insurance
companies to visualize these survival probabilities for both sexes combined.

2.3.2 Relative survival

Information on cause of death is often unavailable or unreliable and not all deaths of
cancer patients can be easily classified as a death due to the cancer of interest or due to
another cause (Percy et al., 1981). Relative survival, which does not require information
on the cause of death, provides ameasure of the excessmortality experienced by cancer
patients by comparing the mortality in the cancer population with the mortality in
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Figure 2.1: Estimated overall survival probability by gender and site using the nonparametric
Kaplan-Meier (1958) estimator

the general population. This led the relative survival to become the standard measure
of patient survival for population-based cancer registries, as shown by its prominence
around the world in studies related to cancer survival (Ries et al., 2002; Coleman et al.,
1999; Berrino et al., 1999; Perme et al., 2012, 2016; Pavlič and Pohar Perme, 2019).

Relative survival models are divided into two types: (i) additive models and (ii)
multiplicative models; see e.g. Pohar and Stare (2006). Despite the wide acceptance of
multiplicative specifications within the actuarial community, it turns out that additive
models are biologically more plausible in cancer studies and provide a better fit to the
data (Dickman et al., 2004; Buckley, 1984; Hakulinen and Tenkanen, 1987; Esteve et al.,
1990; Bolard et al., 2001). The additive specification is thus favored here. The hazard
at time 𝑡 since diagnosis for cancer patients with covariate vector 𝒁 , is decomposed
into two additive components: the population hazard based on available patient’s
characteristics 𝒁 = 𝒛, denoted as 𝜆𝑃 (·|𝒛), and the excess hazard specific for the cancer
of interest, denoted as 𝜆𝐸 (·|𝒛). Formally,

𝜆(𝑡 |𝒛) = 𝜆𝑃 (𝑡 |𝒛) + 𝜆𝐸 (𝑡 |𝒛). (2.1)

From this expression, relative survival model (2.1) can be written as

𝑆 (𝑡 |𝒛) = 𝑆𝑃 (𝑡 |𝒛)𝑟 (𝑡 |𝒛)

where the relative survival function 𝑟 (·|𝒛) is defined as

𝑟 (𝑡 |𝒛) = 𝑆 (𝑡 |𝒛)
𝑆𝑃 (𝑡 |𝒛)

. (2.2)

In words, the relative survival function 𝑟 (·|𝒛) corresponds to the ratio of the survival
function of the studied group 𝑆 (·|𝒛) to the survival function of a comparable group
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(i.e., with the same characteristics) from the general population 𝑆𝑃 (·|𝒛) (Dickman
et al., 2004).

In (2.1), 𝜆𝑃 (·|𝒛) is usually estimated on the basis of external data such as population
life tables, which are usually stratified according to the main factors affecting patient
survival such as age, gender, and calendar year. As population life tables take into
account all deaths, those due to the cancer of interest are thus also included. However,
it is assumed that this does not influence the estimated ratio as mortality for a given
cancer represents only a small fraction of the overall mortality. Correcting for this
over-representation of the cancer being studied has, in practice, an insignificant effect
on estimates of expected survival (Esteve et al., 1994). Oksanen (1998) shows that this
holds even for common cancers such as prostate cancer.

Net survival is a measure of patient survival corrected for the effect of other causes
of death (Dickman et al., 2004). It represents the (hypothetical) survival that would
be observed if the only possible cause of death was the disease of interest (Berkson
and Gage, 1950; Schaffar et al., 2017). If we are in a situation where we only have
data from (a sample of) our sub-population of interest (e.g., cancer patients) but we
have information on the cause of death, then estimation methods for net survival,
sometimes referred then as marginal survival (see Geskus, 2015), can be estimated in
a competing risks framework. However, unbiased estimate of this net or marginal
(cause-specific) survival can only be obtained if one can assume independence of the
censoring due to death from other causes (Latouche et al., 2013; Schaffar et al., 2017).
On the other hand, net survival can also be estimated when the cause of death is
unknown by making use of information from the general population. In this different
framework, net survival can then be estimated using the relative survival method.
Since the BCR does not collect information on the cause of death, we are in this latter
situation. The net survival function is thus derived from the excess mortality hazard
𝜆𝐸 (·|𝒛). Formally, it is defined as

𝑆𝑛 (𝑡 |𝒛) = exp
(
−

∫ 𝑡

0
𝜆𝐸 (𝑢 |𝒛)𝑑𝑢

)
. (2.3)

Depending on 𝜆𝐸 (·|𝒛), 𝑆𝑛 (·|𝒛) may be a proper survival function but this is not
necessarily the case.

There are several approaches to estimate net survival of a cohort of patients in
a relative survival framework. Danieli et al. (2012) showed that only two of them
provide unbiased estimates of net survival: (i) the nonparametric Perme et al. (2012)
estimator and (ii) the excess risk based on an adjusted modeling on the demographic
variables of the life tables. We used the nonparametric Perme et al. (2012) estimator
to estimate net survival as recommended by Danieli et al. (2012) for population based
studies.

Net survival probabilities by gender and site are illustrated in Figure 2.2, while
net survival by age group and site is displayed in Figure 2.3. Numerical values are
listed in Table 2.3. The net survival functions reach a plateau for both sites and
genders, which is indicative for ‘cure’ of cancer. The estimated survival curves staying
practically constant after 5 years since diagnosis indicates that the excess hazard of
dying compared to the general population becomes negligible after only a few years
after diagnosis. This suggests that a waiting period of moderate length would be
enough to apply standard life insurance rates for the cancers under consideration.
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Figure 2.2: Net survival by gender and site using the nonparametric Perme et al. (2012)
estimator

Figure 2.3: Net survival by age group and site using the nonparametric Perme et al. (2012)
estimator
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Gender Cancer Age at 𝑆𝑛 (𝑡 = 5) 𝐶𝐼95% 𝑆𝑛 (𝑡 = 10) 𝐶𝐼95%
site diag.

Men Melanoma 20-34 0.921 (0.901-0.942) 0.894 (0.868-0.921)
35-49 0.899 (0.886-0.913) 0.871 (0.853-0.890)
50-69 0.871 (0.859-0.884) 0.849 (0.828-0.870)

Thyroid 20-34 0.997 (0.987-1.010) 0.989 (0.968-1.010)
35-49 0.972 (0.957-0.987) 0.932 (0.901-0.964)
50-69 0.928 (0.908-0.949) 0.895 (0.858-0.933)

Women Melanoma 20-34 0.974 (0.966-0.982) 0.963 (0.951-0.974)
35-49 0.956 (0.949-0.963) 0.936 (0.925-0.946)
50-69 0.927 (0.918-0.936) 0.907 (0.893-0.922)

Thyroid 20-34 0.998 (0.995-1.000) 0.997 (0.990-1.000)
35-49 0.992 (0.987-0.997) 0.990 (0.981-0.998)
50-69 0.958 (0.948-0.968) 0.941 (0.924-0.959)

Table 2.3: Net survival probabilities by gender, site and age group using the nonparametric
Perme et al. (2012) estimator at 5 and 10 years after diagnosis, 𝑆𝑛 (𝑡 = 5) and 𝑆𝑛 (𝑡 = 10), with
their confidence intervals at 95% level

Net survival by site and age group (both sexes combined, Figure 2.3) follows
a quite expected path for melanoma cancer patients (left panel): younger patients
have a better net survival compared to older patients. In particular, the 5-year and
10-year net survival probabilities for patients aged 20-34 were respectively 0.959
(with 95% confidence interval [0.951− 0.968]) and 0.943 (with 95% confidence interval
[0.932 − 0.955]), meaning that for this age group (which is typically the age at which
one starts a loan), patients’ survival is close to that of the general population. Net
survival by age group for thyroid cancer patients (right panel of Figure 2.3) yields
even more promising results in the context of mortgage loans as the age group which
is most likely to subscribe to such financial products (20-34 years) has a 5-year and
10-year net survival probabilities of respectively 0.998 (with 95% confidence interval
[0.995 − 1]) and 0.996 (with 95% confidence interval [0.989 − 1]).

Net survival by gender, site and age group (Table 2.3) indicates a highly favorable
outcome for women and men diagnosed with thyroid cancer and aged 20-34. For both
subgroups, the 95% confidence interval for net survival at 10 years after diagnosis
indicate that a net survival equal to that of the general population cannot be rejected
at the 5% significance level.

Regarding the gap between women and men for the net survival curves (in par-
ticular for melanoma cancer patients), we do not have a clear explanation for these
differences in survival probability. However, although stage distribution is very sim-
ilar across gender, Belgian Cancer Registry (2012), in agreement with Balch et al.
(2001), showed that compared to men, females have more often melanoma on the
arms or legs which has a better prognosis. This partly explains the difference in
survival for melanoma cancer patients.

Using data provided by the French network of cancer registries (FRANCIM),
Boussari et al. (2018) found very similar results for thyroid cancer patients diagnosed
between 1995 and 2010. They obtained a 10-year net survival of 0.99 (95% CI [0.99-
1.00]) for women aged 15-45, and 0.98 (95% CI [0.96-0.99]) for men of the same age

40



2.3. SURVIVAL OF CANCER PATIENTS

Covariates 𝛽 (S.E.) exp(𝛽) 𝑝-value
Gender Women -0.759 (0.060) 0.468 <0.001
Agegr 20-34 -0.741 (0.105) 0.477 <0.001
Agegr 35-49 -0.349 (0.064) 0.705 <0.001
fu [0,5) -3.507 (0.045) 0.030 <0.001
fu [5,10) -4.590 (0.105) 0.010 <0.001
fu [10,14] -5.334 (0.420) 0.005 <0.001

Table 2.4: Results of model (2.4) fitted to melanoma cancer data

group. Their results are also very close to ours when comparing patients aged 45-
55: a 10-year net survival of 0.99 (95% CI [0.98-1.00]) for women, and 0.92 (95% CI
[0.88-0.95]) for men. In another study including melanoma cancer patients diagnosed
between 1989 and 2004 by the French registries, Jooste et al. (2013) obtained a 10-year
net survival for men and women aged 15-45 of 0.81 (95% CI [0.78-0.84]) and 0.91 (95%
CI [0.89-0.93]), respectively.

2.3.3 Proportional excess hazards

Previous sections suggested that some patients actually have a survival comparable
to that of the general population. In the following sections, we confirm these findings
from the point of view of the excess hazard.

Esteve et al. (1990) proposed a maximum likelihood method for estimating net
survival via the modeling of the excess hazard. The excess hazard 𝜆𝐸 (𝑡 |𝒛) to be
estimated is represented as

log(𝜆𝐸 (𝑡 |𝒛)) = (𝜷⊤𝒛) + log

(
𝑚∑︁
𝑘=1

𝜏𝑘 𝐼𝑘 (𝑡)
)

(2.4)

where 𝜷 is the log excess hazard ratio corresponding to the covariates, 𝐼𝑘 (𝑡) the
indicator function for the 𝑘𝑡ℎ interval (after splitting the follow-up time into short
time intervals) and 𝜏𝑘 the net baseline excess hazard in that interval for patients with
𝒛 = 0.

A maximum likelihood approach to estimate parameters of model (2.4) is available
in the relsurv package (Perme and Pavlič, 2018; Pohar and Stare, 2006) in R (R
Core Team, 2017). Fitting two models to our data (one for each cancer site) with age
group (50-69 years old taken as the reference category) and follow-up (with intervals
of 5 years) as covariates, we obtain the results presented in Tables 2.4 and 2.5. The
coefficient estimates 𝛽 and their standard errors are displayed in the second column,
the exponential of coefficients are given in the third column, and 𝑝-values are reported
in the last column. Note that the significance is largely impacted by the large sample
size. The exponential of coefficients are given to facilitate interpretation.

For both cancer sites, being a woman and being younger at the time of diagnosis
are good prognostic factors.
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Covariates 𝛽 (S.E.) exp(𝛽) 𝑝-value
Gender Women -0.754 (0.169) 0.470 <0.001
Agegr 20-34 -2.864 (0.703) 0.057 <0.001
Agegr 35-49 -1.252 (0.213) 0.286 <0.001
fu [0,5) -4.086 (0.129) 0.017 <0.001
fu [5,10) -5.089 (0.314) 0.006 <0.001
fu [10,14] -5.276 (0.867) 0.005 <0.001

Table 2.5: Results of model (2.4) fitted to thyroid cancer data

2.3.4 Flexible parametric model

Model (2.4) is based on the assumption of proportional excess hazards, which con-
strains the excess hazard ratio to be constant over the follow-up time (Giorgi et al.,
2005). Nonetheless, in cancer survival, the effects of prognostic factors often vary
with time since diagnosis (Dickman et al., 2004; Quantin et al., 1999) and it is well
known that the linearity assumption of covariates may be too strong and not always
verified in practice (Mounier, 2015). As an example with the variable age, the effect
on hazards of an increase of one year is often different for patients aged 18 or 60.
This is why Remontet et al. (2019) and Fauvernier et al. (2019a,b) extended the model
proposed by Esteve et al. (1990) to account for non-linear and non-proportional effects
of covariates. This model also allows (i) a flexible modeling of the baseline hazard
and (ii) a flexible interaction between several covariates adopting a multidimensional
penalized splines approach. This leads to the specification

log(𝜆𝐸 (𝑡 |𝒛)) =
𝐽∑︁
𝑗=1

𝑔 𝑗 (𝑡, 𝒛) (2.5)

where 𝑔 𝑗 (·, ·) are uni- or multidimensional penalized spline functions and each func-
tion 𝑔 𝑗 (·, ·) can be the marginal basis of time, the marginal basis of a covariate or the
tensor product of the marginal bases of any number of elements of (𝑡, 𝒛) (Fauvernier
et al., 2019b). This model has the advantage that the splines bring the flexibility
needed for modeling the hazard and inclusion of penalty terms allows to control this
flexibility for smooth estimation (as suggested by Eilers and Marx, 1996).

Several flexible models to estimate excess hazard were considered in this paper:

■ baseline hazard only (BH) model:
Eq. (2.4) without the (𝜷⊤𝒛) term, as it considers an excess hazard in each
interval and no other covariates

■ linear and proportional hazard (LPH) model:
log(𝜆𝐸 (𝑡 |𝒛)) = 𝑓 (𝑡) + 𝑎𝑔𝑒

■ linear and non-proportional hazard (LNPH) model:
log(𝜆𝐸 (𝑡 |𝒛)) = 𝑓 (𝑡) + 𝑎𝑔𝑒 + 𝑔(𝑡) · 𝑎𝑔𝑒

■ non-linear and proportional hazard (NLPH) model:
log(𝜆𝐸 (𝑡 |𝒛)) = 𝑓 (𝑡) + 𝑔(𝑎𝑔𝑒)
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■ non-linear and non-proportional hazard (NLNPH) model:
log(𝜆𝐸 (𝑡 |𝒛)) = 𝑓 (𝑡) + 𝑔(𝑎𝑔𝑒) + 𝑔(𝑡) · 𝑎𝑔𝑒

with 𝑓 (𝑡) the flexible parametric function for the baseline/reference hazard as a
function of time and 𝑔(𝒛) the (non-)linear function of the covariates.

In the context of modeling relative survival in cancer studies, 𝑓 (𝑡) is used in
models to estimate the baseline hazard function. This function is often modeled using
splines to provide flexibility and to avoid the issues associated with step functions,
especially in the context of sparse data. Additionally, in models that incorporate
covariate effects, 𝑓 (𝑡) can be a component of more complex hazard functions, such
as log(𝜆𝐸 (𝑡, 𝑎𝑔𝑒)) = 𝑓 (𝑡) + 𝑔(𝑎𝑔𝑒) + 𝑔(𝑡) · 𝑎𝑔𝑒 , where 𝑓 (𝑡) and 𝑔(𝑡) are cubic splines,
allowing the hazard to vary smoothly over time and interact with other covariates
like age. On the other hand, the function 𝑔(𝑡) often denotes the effect of a covariate
over time. For example, in the same model log(𝜆𝐸 (𝑡, 𝑎𝑔𝑒)) = 𝑓 (𝑡) +𝑔(𝑎𝑔𝑒) +𝑔(𝑡) ·𝑎𝑔𝑒 ,
𝑔(𝑎𝑔𝑒) represents the non-linear effect of age on the log hazard, modeled as a spline
with a knot usually at the mean or median age (Remontet et al., 2007). The function
𝑔(𝑡) can also be part of a more flexible modeling framework that relaxes both the
proportional hazards and log-linearity assumptions (Mahboubi et al., 2011).

We fitted all these models and compared them based on a likelihood ratio test. The
remaining of this section is based on the NLNPHmodel, deemed the best one according
to likelihood ratio test. Excess hazard, assuming non-linear and non-proportional
hazard for age at diagnosis, are estimated using the flexrsurv package (Clerc-
Urmès et al., 2020) in R. More precisely, this model has a spline of the type truncated
power basis, with degree 2 and a knot at one year after diagnosis (determined after
having explored different numbers and positions of time knots for the spline basis).
It has been based on a truncated power basis because it is intuitive and facilitates
extrapolation beyond the knots. Additionally, it rarely encounters computational
issues, particularly when the spline order and the number of knots are small, as is the
case in our study (Harrell et al., 2001; Remontet et al., 2007; Mahboubi et al., 2011).

As previously suggested, for both cancer sites, excess mortality hazard increases
with age at diagnosis and decreases with time since diagnosis (Figure 2.4). For thyroid
cancer patients, excess hazard at the time of diagnosis is approximately 0.15 excess
deaths/year for patients aged 65 and is close to 0 for patients aged 40 and below. From
4 years to 10 years after diagnosis, excess hazard remains constant and is close to
0 for all ages. Beyond 10 years after diagnosis, excess hazard slightly bends up but
remains small. This observation can also be an artefact of the spline function, which is
“unbounded” at the end (a higher order degree for the spline function can produce this
upwards bend). For melanoma cancer patients, excess hazard at the time of diagnosis
is approximately 0.035 for patients aged 65 and is close to 0 for the youngest patients.
For all ages, excess hazard peaks at 1 year after diagnosis before decreasing until it
becomes negligible, around 8 years after diagnosis.

2.3.5 Cure models

Cure models are a specific class of survival models which assume that a fraction
of the subjects will never develop the event of interest, here death due to cancer.
Such models have been used in different fields such as economics (e.g., time until
an unemployed person finds a new job), engineering (e.g., time until a machine or
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Figure 2.4: Excess hazard by age and cancer site estimated with a non-linear and non-
proportional hazard model

device fails), finance (e.g., time until a bank goes bankrupt), marketing (e.g., time until
a client buys a new product), for instance. In our context, cure models can be used
to determine cancer patients who are considered as “long-term survivors” and those
who are not (Maller and Zhou, 1996; Othus et al., 2012). The long-term survivors
are still often referred to as “cured subjects” in the literature as a consequence of the
name of this class of models. Cure models are particularly suitable for some cancer
sites because if the treatment is successful, the patient will never suffer a relapse of
the disease. It is also particularly suitable for less aggressive cancers such as, among
others, the two considered in this paper because a considerable percentage of subjects
exhibits long-term survival.

There are two main types of cure models in the literature: (i) mixture cure models
(the most common type, based on the seminal work by Boag (1949) and Berkson and
Gage (1952)) and (ii) non-mixture cure models (Andrei et al., 1996; Tsodikov et al.,
2003; Chen et al., 1999); see Amico and Van Keilegom (2018) for a recent overview.
In the present paper, we consider only the family of mixture cure models. In this
approach, the patient population is considered as a mix of two types of patients, that
is, long-term survivors who will never die of their cancer and the uncured patients
who, if not censored, will die of their cancer (Lambert et al., 2006). In the global
survival setting, the mixture cure model is specified as follows:

𝑆 (𝑡) = 𝜋 + (1 − 𝜋)𝑆𝑢 (𝑡),
where 𝜋 is the proportion of patients that are long-term survivors and 𝑆𝑢 (·) the
(conditional) survival function of the uncured population. Following the notations
of Amico and Van Keilegom (2018), 𝑆𝑢 (𝑡) = 𝑃 (𝑇 > 𝑡 |𝐵 = 1), with 𝐵 the cure status
indicator, 𝐵 = 1 corresponding to the uncured individuals, and 𝑆𝑢 (𝑡) being a proper
survival function, that is, lim𝑡→∞ 𝑆𝑢 (𝑡) = 0. Both 𝜋 and 𝑆𝑢 (·) can then be modeled to
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Gender Cancer Age at Est. cured 𝐶𝐼95% Est. 𝐶𝐼95%
site diag. fraction mean 𝑇

Men Melanoma 20-34 88.77 (88.21-89.32) 3.54 (3.12-4.07)
35-49 86.28 (85.77-86.78) 3.83 (3.52-4.20)
50-69 84.99 (84.65-85.33) 2.94 (2.79-3.10)

Thyroid 20-34 NA NA NA NA
35-49 91.96 (86.99-96.93) 10.57 (1.32-19.81)
50-69 92.87 (92.34-93.41) 0.96 (0.67-1.25)

Women Melanoma 20-34 96.53 (96.33-96.72) 3.81 (3.46-4.22)
35-49 93.28 (92.94-93.63) 4.49 (4.04-5.03)
50-69 90.01 (89.49-90.53) 3.93 (3.50-4.46)

Thyroid 20-34 99.86 (99.82-99.90) 0.47 (0.00-1.12)
35-49 99.03 (98.82-99.23) 4.87 (3.03-6.71)
50-69 95.73 (95.39-96.07) 1.40 (1.02-1.78)

Table 2.6: Estimated cured fractions (in %) and mean survival time (in year) for the fatal cases
by gender, site and age group, with their 95% confidence intervals. Note: Est. mean T = Estimated
mean survival time of fatal cases. NAs for young age groups are due to an insufficient number of
cases

depend on covariates. Cure models can be a useful alternative to standard survival
models for cancers with a strong medical evidence and a confirmation in the data
for the presence of long-term survivors (Legrand and Bertrand, 2019). In the relative
survival setting, cure models also allow to determine the proportion of statistically
cured cases and survival time of the fatal cases (Silversmit et al., 2017a).

The estimated proportion of cured cases and mean survival time of fatal cases for
the two cancer sites considered (melanoma and thyroid), using a mixture cure model
are given in Table 2.6. Note that NAs for young age groups are due to an insufficient
number of cases.

The estimated cured proportion ranges from 84.99% (𝐶𝐼95% [84.65, 85.33]) for men
with melanoma cancer aged 50-69 to 99.86% (𝐶𝐼95% [99.82, 99.9]) for women with
thyroid cancer aged 20-34. The estimated mean survival time of fatal cases ranges
from 0.47 years (𝐶𝐼95% [0, 1.12]) for women with thyroid cancer aged 20-34 to 10.57
years (𝐶𝐼95% [1.32, 19.81]) for men with thyroid cancer aged 35-49. Moreover, higher
age at diagnosis is correlated with lower cured proportions, except for men with
thyroid cancer from the oldest age group.

Using data on 818,902 Italian cancer patients diagnosed between 1985 and 2005,
Dal Maso et al. (2014) also found encouraging results for thyroid cancer patients,
with an estimated cured fraction of 99% and 95% for women and men aged 15-45,
respectively. Regarding melanoma cancer patients, the results on Italian data are
somewhat lower than the estimations presented in this work, with a cured proportion
of 85% and 77% for women and men aged 15-45, respectively. The fact that we are
using a more recent incidence period may partly explain these improved results.
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2.4 Time-to-cure

The time-to-cure (TTC) is generally referred as the time after which patients can be
considered as long-term survivors. Different approaches to define TTC have emerged
in the literature. We highlight three of them. Firstly, Chauvenet et al. (2009) defined
TTC𝐶 as the time at which “almost” (that is, 1−𝜖 , with 𝜖 small enough usually ranging
from 0.1 to 0.01) all uncured patients would have died. From that time onwards, the
number of deaths attributable to the cancer of interest becomes negligible.

Secondly, Dal Maso et al. (2014) define TTC𝐷 as the shortest time after diagnosis
at which the 5-year conditional net survival (defined as the ratio between net survival
at time 𝑡 + 5 years and net survival at time 𝑡 ) is close to 1.

Thirdly, Boussari et al. (2018) defined TTC𝐵 as the shortest time from which the
conditional probability of being cured at a given time 𝑡 after diagnosis knowing that
the patient was alive up to time 𝑡 is close to 1, that is TTC𝐵 is the smallest value of 𝑡
such that, for some given (small) value of 𝜖

𝜋

𝑆 (𝑡) =
𝜋

𝜋 + (1 − 𝜋)𝑆𝑢 (𝑡)
≥ 1 − 𝜖, (2.6)

where 𝜋 is the proportion of cured patients and is estimated from the relative survival
with the hypothesis of cure.

The main advantage of TTC is that, although the results may depend on the
chosen definition, it is a simple and straightforward indicator to set the time after
which a patient who had cancer should not be penalized anymore when applying for
mortgage insurance.

In this paper, we focus on TTC𝐵 for several reasons. First, TTC𝐵 depends on
both the cure proportion and the survival of the uncured, so it is less influenced by
high early excess mortality. Second, TTC𝐵 has the advantage of being an increasing
function of time, therefore, it is not sensitive to a temporary plateau effect (that is, net
survival curve flattening before decreasing again). Third, estimating TTC𝐵 requires a
5-year shorter follow-up than TTC𝐷 , which is a clear advantage of TTC𝐵 over TTC𝐷
(Boussari et al., 2018).

Time-to-cure TTC𝐵 was estimated using the rstpm2 package (Clements and Liu,
2019) in R. Table 2.7 presents estimated TTC𝐵 (with 𝜖 = 0.05 and 𝜖 = 0.01) in years
and the cure proportion in percentage for each subgroup.

In the following we interpret only TTC𝐵 with 𝜖 = 0.05. Results of TTC𝐵 with
𝜖 = 0.01 are still presented for the sake of comparison and completeness. From Table
2.7 we see that while TTC𝐵 increases with age, ranging from a few days (0.01 year) for
the youngest age groups to almost 3.5 years for the oldest age group of male melanoma
cancer patients, cure proportion decreases with age, ranging from 99.75% for women
aged 20-34 with thyroid cancer to 84.77% for men aged 50-69 with melanoma cancer.
With this approach, the subgroups that stand out the most are the ones with a small
TTC𝐵 (and confidence intervals as narrow as possible to decrease uncertainty as much
as possible) and a large proportion of long-term survivors. Among all subgroups
considered, this is the case especially for women with melanoma cancer aged 20-34
(T̂TC𝐵 = 0.01with 95% confidence interval [0.00−1.18] and estimated cure proportion
= 96.75%). Note that the wide 95% CIs for thyroid cancer patients aged under 50 are
due to the small number of cases.
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Gender Cancer Age at T̂TC𝐵 𝐶𝐼95% T̂TC𝐵 𝐶𝐼95% Est. cure
site diag. 𝜖 = 0.05 𝜖 = 0.05 𝜖 = 0.01 𝜖 = 0.01 prop. (%)

Men Melanoma 20-34 2.38 (1.92-2.85) 5.64 (4.90-6.39) 89.69
35-49 2.78 (2.33-3.23) 5.86 (5.13-6.59) 88.12
50-69 3.42 (3.00-3.85) 6.21 (5.51-6.90) 84.77

Thyroid 20-34 0.01 (0.00-28.97) 0.11 (0.00-0.78) 98.88
35-49 0.01 (0.00-16.03) 4.66 (3.19-6.13) 96.46
50-69 0.91 (0.51-1.31) 7.14 (6.40-7.87) 90.84

Women Melanoma 20-34 0.01 (0.00-1.18) 4.32 (3.30-5.35) 96.75
35-49 0.81 (0.21-1.42) 5.65 (4.82-6.49) 94.16
50-69 2.56 (2.04-3.08) 6.39 (5.66-7.12) 90.87

Thyroid 20-34 0.01 (0.00-23.42) 0.01 (0.00-23.42) 99.75
35-49 0.01 (0.00-14.45) 0.01 (0.00-14.45) 99.35
50-69 0.01 (0.00-5.10) 4.82 (3.78-5.86) 94.93

Table 2.7: Estimated value of time-to-cure (T̂TC𝐵 in years, with 𝜖 = 0.05 and 𝜖 = 0.01) together
with 95% confidence intervals and cure proportion (in %) by cancer site, sex and age group

Figure 2.5 illustrates the cure proportion obtained from a cure model and the
TTC𝐵 (𝜖 = 0.05) by age group and gender for both cancer sites. We can easily classify
points into two clusters; the ones in the upper left corner with the best possible
outcomes in terms of TTC𝐵 and cure proportion and the others. Among melanoma
cancer patients, women aged under 50 belong to this group with favorable outcomes,
whereas for thyroid cancer patients, women of all ages and men aged under 50 belong
to this group.

Similar results for thyroid cancer patients have been obtained by Boussari et al.
(2018) on FRANCIM data. They also found that women aged 15-65 and men aged
15-45 have highly favorable outcomes, that is, a cure proportion close to 100% and a
TTC𝐵 close to 0.

2.5 Application to mortgage insurance

All results obtained so far suggest that, for melanoma and thyroid cancer patients,
excess mortality becomes negligible after some waiting period. In this section, we
determine the length of such a waiting period as the time needed to get back to stan-
dard premium rates. Henceforth, standard rates correspond to premiums computed
according to life tables commonly used on the Belgian market:

■ regulatory life table XK applying to insurance products comprising benefits in
case of death (formally, XK defines minimum premium amount for policies with
a positive sum at risk). This life table is conservative and generates a relatively
high safety loading.

■ experience market life table published by the National Bank of Belgium (NBB).
These life tables reflect the mortality observed on the market, within portfolios
of companies controlled by NBB. There is no safety loading and insurers are
only allowed to apply premium rates resulting from NBB tables for relatively
short periods of time (rates are subject to revision in case the observed mortality
on the market changes over time).
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Figure 2.5: Cure proportion versus time-to-cure (in years, with 𝜖 = 0.05) by gender and age
group at diagnosis in patients diagnosed with melanoma and thyroid cancer

We also include premium rates calculated from general population life table published
by Statbel, for the sake of comparison. Term life premiums are smaller for NBB life
tables and larger for XK life table, Statbel life tables falling in between because of the
higher socio-economic profile of the insured population. Premium rates for cancer
patients are computed from the excess mortality hazards estimated with the help of
the flexible parametric model discussed in Section 2.3.4, according to the time elapsed
since diagnosis.

Consider a mortgage insurance applicant aged 𝑥 borrowing an amount of 100,000
at interest rate 2% for a duration 𝛿 . At time 𝑡 , the amount of the loan that has not been
amortized is denoted as 𝑐 (𝑡). This loan is secured by mortgage insurance, repaying the
lender the amount 𝑐 (𝑡) in case the policyholder dies at time 𝑡 . The expected present
value (EPV) of benefits paid in case of death is thus equal to

EPV =

∫ 𝛿

0
𝑐 (𝑡)𝑣 (0, 𝑡)𝑡𝑝𝑥𝜇𝑥+𝑡𝑑𝑡 (2.7)

where 𝑐 (𝑡) is the amount of benefit in case of death at time 𝑡 (which is in our case, a
decreasing sum insured corresponding to the amount of the loan not yet amortized),
𝑣 (0, 𝑡) is the present value at time 0 of a unit payment made at time 𝑡 (the discount
factor), 𝑡𝑝𝑥 is the 𝑡-year survival probability for a policyholder aged 𝑥 and 𝜇𝑥+𝑡 is the
force of mortality at attained age 𝑥 + 𝑡 .

In case the applicant suffered from cancer, we have to relate 𝑡𝑝𝑥 and 𝜇𝑥+𝑡 entering
the formula to the survival function and hazard estimated in the preceding sections.
To this end, we assume that the applicant aged 𝑥 has been diagnosed with cancer at
age 𝑥 −𝑤 . We then have
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𝑡𝑝𝑥 =
𝑆 (𝑤 + 𝑡 |age at diagnosis = 𝑥 −𝑤)
𝑆 (𝑤 |age at diagnosis = 𝑥 −𝑤)

𝜇𝑥+𝑡 = 𝜆(𝑤 + 𝑡 |age at diagnosis = 𝑥 −𝑤).

with 𝑆 (·) estimated by the observed survival obtained via the Kaplan-Meier estimator,
and 𝜆(·) estimated by the excess hazard since diagnosis based on the NLNPH model
(eq (2.5)) discussed in Section 2.3.4.

This allows us to compute EPV(𝑤) according to (2.7) for each candidate waiting
period𝑤 after diagnosis and to select the smallest𝑤 such that EPV(𝑤) becomes close
to the value computed from the XK life table (assuming that cancer patients are priced
with the regulatory life table XK and that the market can absorb the extra mortality
burden corresponding to the difference between XK and NBB life tables).

Consider a home loan of duration 20 years. A cancer patient aged 30 and another
aged 50 apply for mortgage insurance, with technical interest rate of 1% and a term of
20 years. These characteristics have been chosen as they represent a rather standard
setting and other scenarios revealed similar patterns when considering different ages
between 18 and 50. EPV based on XK, NBB and Statbel life tables have been computed
to compare it with EPV(𝑤) for a cancer patient diagnosed with melanoma or thyroid
cancer at ages 30−𝑤 and 50−𝑤 . Results are illustrated in Figure 2.6. Notice that EPV
are presented for both genders combined, as XK life table applies to both sexes and
insurance companies operating in the European Union are not allowed to account for
gender in pricing.

Results show that EPV of a 30-year-old patient approaches EPV based on XK life
table about 9 years after diagnosis for melanoma cancer patients and after slightly
less than 1 year for thyroid cancer patients. For a 30-year-old patient with melanoma
cancer, the EPV never reaches within our time period the EPV based on NBB and
Statbel life tables. For a 30-year-old patient with thyroid cancer, the EPV goes below
the lowest EPV (based on NBB life table) as early as about 4 years after diagnosis. For
a 50-year-old patient with melanoma cancer, EPV reaches the same level than the
one based on XK life table 3 years after diagnosis, and reaches the lowest level (based
on NBB life table) less than 8 years after diagnosis. Finally, for a 50-year-old patient
with thyroid cancer, EPV reaches XK level 1 year after diagnosis, then stays below the
lowest EPV 3 years after diagnosis. This is in line with the reduced waiting periods
published in the Royal decree on June 14, 2019, where a duration of 3 years applies
in this case. There is however a fundamental difference in the approach because the
waiting period starts at diagnosis in the present study whereas it starts at the end of
the treatment protocol according to the law.

The improvement for melanoma cancer patients is not as substantial as for thyroid
cancer patients since the time period is close to 9 and 3 years for 30 and 50-year-
old patients, respectively. Nonetheless, it remains advantageous for patients since
the 9 and 3-year period starts from the date of diagnosis and not at the end of the
therapeutic treatment. Note that, at first glance there seems to be an advantage for
older patients with shorter waiting time, while all the other results seem rather to
indicate an advantage for younger patients with shorter time to cure and higher cure
rate. This actually comes from the fact that in absolute terms, younger patients have
shorter time to cure and thus lower EPV than older patients. As shown in Figure 2.6,
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Figure 2.6: Expected present value (EPV) of a life insurance contracted by a 30 and 50-year-
old cancer patient for a period of 20 years with interest of 1 percent and benefit of 100,000.
Horizontal lines correspond to EPV calculated with XK, NBB and Statbel life tables

EPV for a 30-year-old patient is lower than for a 50-year-old patient regardless of
the time since diagnosis and for both cancer sites. However, financial burdens (i.e.,
XK, NBB and Statbel levels) are much lower for younger people than for older people
(since young people from the general population have a lower probability of dying
than older people).

2.6 Discussion

Results derived in this paper are in line with the reduced waiting period specified in
the Belgian legislation. Furthermore, results are also in line with the reference grid
used in France (convention AERAS) as the time after which patients have access to
the right to be forgotten according to this convention is relatively short (maximum 6
years after the end of the therapeutic protocol for the two cancers considered in this
paper).

All analyzes in this paper are based on the time since diagnosis although the right
to be forgotten implemented in Belgium and France is applicable after a certain time
after the end of the therapeutic protocol. For the sake of clarity and easiness, an
approach based on the time since diagnosis would undeniably be more favorable to
patients. A right to be forgotten based on the date of diagnosis would indeed allow
patients to know when exactly they can expect to benefit from this right. On the
contrary, with the current approach based on treatment end date (which is unknown
until the success of the treatment and can even change later in case of relapse),
benefiting from this right is subject to a high level of uncertainty as durations of
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treatments are heterogeneous and unpredictable even within same cancer types and
stages. Therefore, patients cannot currently easily estimate when (and if) they will be
able to benefit from this right.

One of the main results of this paper is thus to promote the use of the date of
diagnostic instead of the end of the therapeutic treatment for defining the waiting
period. However, one could argue that the length of medical treatments may have
significantly reduced over the period 2004-2018 and if this is the case, both approaches
could be now closer than expected. While it could have been interesting to formally
compare both approaches, individual data on the type and length of treatment for
each case is not reported in the Belgian Cancer Registry and such information is
not readily available. Furthermore, the definition of the end of the treatment is in
itself debatable and the duration of the treatment can be quite different depending
on several factors, which is actually an argument in favor of considering the date
of diagnosis. Moreover, durations of treatment are heterogeneous even within the
same cancer type, usually unpredictable, and optimal durations are often still open to
debates (Schvartsman et al., 2019). In any case, a reduction in treatment length due
to the progress made in medical treatment of cancer would obviously lead to closer
agreement between the two approaches. Since the date of diagnosis, as recorded
in national registries, offers the advantage to not be subject to any discussion and
to allow the patient to know from the start when the waiting period will end, we
think that all parties (actuaries included) will benefit from using the date of diagnosis
instead of the end of treatment for more convenience and less uncertainty.

Contrarily to other studies (like Yue et al., 2018), calendar time has not been
included in the analysis conducted in the present paper, because of the limited amount
of cases available (recall that we concentrate on younger ages because of the product
under consideration, targeting young adults). That being said, we performed two
subanalyses: one for the cohort 2004-2011 and one for the cohort 2012-2018 and
compared the results. There are no real changes, so we conclude that there is no
cohort effect. Moreover, simplicity of the system is crucial and given that medical
treatments keep improving, the resulting bias of ignoring a potential cohort effect
favors insurance providers. Notice that the approaches are dependent on factors such
as changing diagnostic criteria and improved diagnostic methods. As these factors
may vary over time irrespective of any improvement of the treatment and are different
between populations, one can not compare excess risks across different time periods
and populations (Lenner, 1990). To illustrate this, suppose that a medical advance
allows a cancer to be diagnosed at a less severe stage (cases that are not as fatal
as the ones detected with the previous methods) and perhaps also earlier with the
consequence that more cases are detected (cases that would not have been detected
with the previous detection methods are now detectable). These improvements will
yield an increased survival probability, regardless of whether the treatment improved
or not. This weakness of the survival probability has been pointed out in the literature
extensively (Enstrom and Austin, 1977; Bailar III and Smith, 1986, among others).
However, although not necessarily the case, earlier diagnoses will in most cases be
associated with better efficacy of the treatment.

The melanoma and thyroid cancers may include a variety of types and could be
diagnosed at different stages of severity. Moreover, significant gaps are observed
between women and men. It is undeniable that including the information on stages
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of severity and gender in the NLNPH model would refine the analysis. However,
these have been ignored on purpose, considering the specific application of the
results for insurance practice. Since December 21, 2012, the European directive on
equality between men and women also applies to outstanding balance insurance. The
judgment of the European Court of Justice indeed stipulates that no discrimination
can be made between men and women when establishing such insurance contract, so
the gender no longer has an influence on the premiums nor on the coverage conditions
of outstanding balance insurances. Therefore, the gender has been omitted not only
for the sake of simplicity, but also because it is illegal for insurance companies to use
that information. Concerning the stage of severity, it has also been omitted to ensure
the simplicity and thus the legal safety of the system. Moreover, not including the
stage may bias the analysis but not necessarily in favor of patients diagnosed at an
advanced stage (perhaps a shorter waiting period would be indicated for them). In any
case, if the method amounts to determining the time to wait before mortality returns
to normal, ignoring the stage is actually a conservative approach for the insurer.

To ensure that the coverage cost of cancer patients remains acceptable for the
insurance industry, further constrains may be imposed in terms of sum insured, for
instance. Also, it could be reasonable to impose that insurers charge a single premium
for mortgage insurance to mitigate mortality risk. Last but not least, compensation
could be performed at market level to avoid that some insurers face higher costs.
Indeed, even if the coverage of mortality risk becomes affordable after a relatively
short waiting period, premium rates reflecting the actual mortality of cancer survivors
remain sometimes above the market premiums resulting from NBB life tables. This
means that when it is the case, this extra cost must be fairly distributed among
stakeholders: cancer patients, insurance industry, banking sector (as they sell the
loans) and society as a whole.

Notice that cancer stage at diagnosis has not been taken into account in the present
study. For patients with more advanced cancer stage, the waiting period will be more
conservative because mortality will peak just after diagnosis and before reverting
back to the general population level. Note also that in situ cancer cases (considered as
pre-cancer) have not been included in the present study as they are not classified as
cancer per se (Chang et al., 2007) like any other “regular” cancer cases which were
not diagnosed as in situ before. Moreover, cancer is not one disease, but a family of
many diverse diseases with different outcomes. Results in the present paper focus on
melanoma and thyroid cancer patients, and cannot be applied to other cancer types.
A natural extension of this work would be to repeat the analyses for all major cancer
types. This would certainly be useful for implementing appropriate market rules
but goes beyond the scope of this study which primarily aims to advocate a waiting
period starting at diagnosis.

Cancer patient survival has improved over the last few decades, with an increasing
proportion of patients being cured for many types of cancer (Andersson et al., 2011;
Lambert et al., 2006). Providing coverage in case cancer is diagnosed or to long-term
cancer survivors is therefore of prime importance, for the society but also for the
insurance industry since proper coverage of such risks may well produce attractive
returns.
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2.7 Additional notes

In the realm of risk management, insurers have a keen interest in assessing the
confidence level of the point estimates calculated. Figure 2.6 has been adapted (see
Figure 2.7) to include 95% confidence intervals, which help to better illustrate the
uncertainty associated with the estimated duration required for EPV(𝑤) to revert
back to the level based on the XK life table. To avoid cluttering the chart and given
that the XK life table is favored in this study, EPV based on NBB and Statbel life tables
are omitted.

Note that confidence intervals are obtained using the same methodology as for
the point estimates of EPV(𝑤), except that lower and upper bounds of the confidence
intervals are computed based on the lower and upper bounds of the predictedmortality
hazard (obtained via the standard errors associated with the predictions). As they
are computed for each integer age, they should not be considered as continuous
confidence bands. While our solution may not be perfect, it offers a meaningful
contribution towards addressing the uncertainty and provides a proposed answer
to the issue at hand. Moreover, even if an exact number is necessary to set the
waiting period opening the right to be forgotten, providing a range for the duration
needed to return to XK level is crucial for assessing the associated uncertainty. This
allows for the selection of a “reasonable” value within this range. By incorporating
these intervals, we aim to enhance the robustness of the analysis and offer a clearer
understanding of the potential variability around the point estimates. This should
provide greater confidence in the conclusions drawn from the data.
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Figure 2.7: Adaptation of Figure 2.6 to include 95% confidence intervals
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Semi-Markov modeling
for cancer insurance 3
This chapter is inspired from an article carrying the same name as the chapter and
published jointly with Pr. Catherine Legrand, Pr. Michel Denuit and Dr. Geert Sil-
versmit in the European Actuarial Journal in 2022.

Abstract
Advancements in medicine and biostatistics have already resulted in a better access
to insurance for people diagnosed with cancer. This materializes into the “right to be
forgotten” adopted in several EU member states, granting access to insurance after a
waiting period of at most 10 years starting at the end of the successful therapeutic
protocol. This paper concentrates on insurance covers on a market where such a right
has been implemented. Stand-alone products are considered, as well as guarantees
included as a rider in an existing package. The cost of offering standard premium rates
to all applicants in mortgage insurance related to property loans is also evaluated.
The 3-state (healthy–ill–dead) Semi-Markov hierarchical model developed in Denuit
et al. (2019) for long-term care insurance is adopted here for actuarial calculations.
Semi-Markov transition intensities are estimated from cancer cases recorded by the
Belgian Cancer Registry. The obtained results suggest that a new offer could develop,
targeting the particular needs of cancer patients.

Keywords: Critical illness, medical insurance, right to be forgotten, multi-state models.

3.1 Introduction and motivation

Massart (2018) testimonial illustrates difficulties faced by cancer survivors to access
life and health insurance products. See also Hendriks et al. (2021) for the particular
case of childhood cancer survivors. However, progress in medicine over the last 20
years greatly improved the prognosis of several types of cancer. In parallel, many
tools have been developed in biostatistics and epidemiology to study mortality and
morbidity associated with cancer. These advances have already resulted in a better
access to insurance products for people diagnosed with cancer. For example, this led
France and Belgium to establish a “droit à l’oubli” (translated literally as “right to be
forgotten” in the remainder of this text) granting access to insurance after a waiting
period of at most 10 years starting at the end of the successful therapeutic protocol,
in absence of relapse within this period. The 10-year period has even been shortened
for several types of cancer with a good prognosis. We refer the reader to Soetewey
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et al. (2021) for an actuarial analysis of the “right to be forgotten” mechanism. Several
initiatives purpose to extend this right throughout EU countries, by law or through
a convention with insurance sector (as in Luxembourg). We refer the reader e.g. to
Scocca andMeunier (2020) as well as to “Survivorship challenge 3.4: Lack of knowledge
of the stigma associated with cancer” listed in Lawler et al. (2021) purposing to take
advantage of the existing legal framework in four EU member countries (France,
Belgium, Luxembourg and the Netherlands) to investigate a pan-European legal
framework on access to financial services for cancer survivors.

Although the establishment of such a “right to be forgotten” is a clear progress
for cancer survivors, there is still room for improvement by filling the coverage gap
during the waiting period opening this right. Social security and supplemental health
insurance cover most medical costs related to cancer, but non-medical costs are usually
paid out of pocket. The latter include lost income (the part not covered by Social
security or supplemental disability insurance), travel to and from hospital (especially
for patients living in rural areas), travel and family lodging expenses, deductibles and
co-payments, non-conventional comfort treatments, private nursing care costs, and
non-nursing help with activities of daily living. They can rapidly become a financial
hardship, even for patients who are treated on an outpatient basis.

Some insurance companies market supplemental cancer insurance policies that
pay lump sum benefits upon diagnosis of cancer or a temporary life annuity to face
these out-of-pocket expenditures. These products developed in Asia, North America
and UK (Bennett et al., 1998; Nielsen and Mayer, 2000). Using Taiwan National Health
Insurance Database, Yue et al. (2018) priced two types of whole-life insurance products:
(i) a (lump-sum) benefit paid when the insured is diagnosed with cancer for the first
time (and the contract terminates after the benefit is paid) and (ii) an annual benefit
paid after the insured is diagnosed with cancer and as long as he or she survives.
Shang (2019) considered term life products and evaluated the extra cost related to
cancer. Let us also mention that cancer is also typically included into the diseases
covered by critical illness insurance policies.

The products considered in this paper are specifically related to the waiting period
opening the “right to be forgotten”, with temporary covers restricted to that period to
fill the gap in coverage on a market where such a right has been implemented. First,
stand-alone products are studied, including cancer insurance with lump sum payment
at diagnosis, or temporary life annuity starting at diagnosis. In the latter case, periodic
payments may correspond to insurance premiums of another product, or even to
loan reimbursement. Then, riders included in a package are discussed. We consider
term insurance with accelerated death benefit paid as a lump sum at diagnosis or as
a temporary life annuity starting at diagnosis. The payment of rider reduces death
benefit specified in term insurance. Finally, we discuss products granting access to
some specific insurance cover (such as mortgage insurance) during the waiting period
opening the “right to be forgotten”. This is especially important at young age, to
guarantee access to property and home ownership (in case of house loan) and to
entrepreneurship (in case of professional loan) to cancer patients whose health status
has improved but who cannot benefit from the “right to be forgotten” because the
waiting period is not exhausted. This guarantee can be bought by parents for their
children (as it is commonly the case in medical insurance, where extra premiums
ensure that children can continue their parents’ medical cover when they leave the
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household, whatever their future health status) or by young adults starting their
professional career (in supplement to individual health insurance, for instance). The
cover may be subject to some deferred period after diagnosis in order to lower its cost
(without real impact since it is very unlikely that cancer patients consider buying
a house or developing professional activities right after diagnosis). The price of
this cover also allows to evaluate the cost of offering standard premium rates to all
applicants in mortgage insurance related to property loans. This is the approach
followed by Crédit Mutuel in France, which announced in November 2021 the end
of health questionnaire when applying for a home loan (under some conditions, like
age below 62, amount borrowed less than 500,000 euros, having Crédit Mutuel as
main bank since 7 years at least, this duration serving as an implicit waiting period
as in the “right to be forgotten” mechanism, and electing domicile in the house to be
bought). The bank even announces that this decision will have a retroactive effect
for the ongoing loans. The loss in mortgage insurance premiums is evaluated to 70
millions euros per year for Crédit Mutuel. Our calculation help to assess the cost of
this decision.

Cancer typically belongs to the set of critical illnesses and is thus also covered
under several standard insurance policies. Long-term care or disability insurance
policies also pay benefits in case of cancer. However, depending on the terms of
the contract, a cancer patient may well have completed his or her treatment before
the deferred period required to receive insurance benefits has been reached. Some
patients even continue working while receiving chemotherapy or radiation therapy
and thus do not qualify for loss of income. The cover comprised in the products
considered in this paper is activated at diagnosis. These policies are targeted to help
patients facing out-of-pocket expenditures while treatment occurs or to grant them
access to other insurance products during the waiting period opening the “right to be
forgotten”. They thus constitute a new offer on a market where such a right has been
implemented (as it is the case in Belgium or France, and may be generalized at EU
level).

To illustrate our proposals, we consider the Belgian market where the “right to be
forgotten” has been inserted in the Insurance Law in April 2019, with reduced waiting
periods for some cancer types defined by Royal Decree in May 2019. Calculations are
based on data available from the Belgian Cancer Registry (BCR), a national population-
based cancer registry collecting data on all new cancer diagnoses in Belgium since
the incidence year 2004. The paper considers three cancers with clear differences in
terms of incidence, survival after diagnosis, and waiting periods defined by Royal
Decree: melanoma (ICD-10 C43) with waiting period reduced up to 1 year after the
end of the successful therapeutic protocol, thyroid (ICD-10 C73) with waiting period
reduced up to 3 to 6 years after the end of the successful therapeutic protocol, and
female breast (ICD-10 C50) cancer subject to the standard 10-year waiting period.
Melanoma and thyroid cancer patients are known to have limited excess mortality
compared to the general population (Soetewey et al., 2021). This has been recognized
by reducing the waiting period opening the “right to be forgotten” in the Royal decree
published in the Belgian Official Journal on June 14, 2019. The situation for female
breast cancer patients is different with usually a high survival probability in the first
years after diagnosis before it eventually decreases due to late cancer recurrences.

In this paper we perform our actuarial calculations in a 3-state Semi-Markovmodel
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healthy (𝑎) ill (𝑖)

dead (𝑑)

Figure 3.1: Semi-Markov 3-state model for cancer insurance

assuming that a policyholder can be either “healthy”, “ill” (diagnosed with cancer), or
“dead”. For the sake of easiness, only transitions from healthy to ill, healthy to dead
and ill to dead are allowed so that cancer is assumed to be permanent (i.e., no recovery
is possible). This non-reversibility greatly simplifies the computations (as the 3-state
process is hierarchical) and appears to be reasonable for cancer insurance considered
in this paper, with temporary cover restricted to the waiting period opening the “right
to be forgotten” and benefits paid after the first diagnosis. For premium calculations,
if mortality in cancer state reverts to the standard level after a sufficiently long
period (like in cure models) then this is equivalent to a transition back to the initial
healthy state. This model has been considered by Denuit et al. (2019) for long-term
care insurance. Let us mention that Dębicka et al. (2015) also considered multi-state
models to combine reverse annuity contracts with critical illness (in fact cancer)
insurance for retired people. The cancer state is divided into several stages to capture
duration effects while remaining with a Markov structure. Here, we consider younger
ages and focus on the waiting period opening the “right to be forgotten”, performing
calculations in the 3-state Semi-Markov model.

The remainder of the paper is organized as follows. Section 2 describes the 3-state
Semi-Markov model used for premium calculation. Cancer insurance products are
described in Section 3, where corresponding premium rates are computed in the
model of Section 2. The final Section 4 discusses the results and concludes.

3.2 Semi-Markov 3-state model

3.2.1 State space and transitions

Multi-state models offer a convenient representation for life and health insurance
liabilities when benefits are associated to sojourns in, or transitions between different
states (Dickson et al., 2013; Pitacco, 2014). We consider an individual aged 𝑥 at
policy issue, taken as time 0. His or her history is described by the stochastic process
{𝑋𝑡 , 𝑡 ≥ 0} where𝑋𝑡 gives the state occupied at time 𝑡 . Here, 𝑡 corresponds to contract
seniority. In this paper, we consider that 𝑋𝑡 ∈ {𝑎, 𝑖, 𝑑} where state 𝑎 stands for “active”
(healthy), state 𝑖 stands for “ill” (cancer) and state 𝑑 stands for “dead” as represented
in Figure 3.1. At the time of diagnosis, individual moves from state 𝑎 to state 𝑖 . We do
not allow for recovery (but mortality rates in state 𝑖 may ultimately become similar
to those applying in state 𝑎 for cured individuals). Since benefits only relate to the
first diagnosis, state 𝑖 corresponds here to the first time a policyholder is diagnosed
with cancer.

The time spent in state 𝑖 is known to influence mortality so that we introduce the
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random variable 𝑍𝑡 , defined as the time spent in the state occupied at time 𝑡 . Formally,

𝑍𝑡 = max{𝑧 ≤ 𝑡 |𝑋𝑡 = 𝑋𝑡−ℎ for all 0 ≤ ℎ ≤ 𝑧}.
For an individual in state 𝑖 at time 𝑡 , 𝑍𝑡 is the time since diagnosis. Henceforth, we
work under the Semi-Markov assumption: only the current state 𝑋𝑡 and the time 𝑍𝑡
spent in the current state influence future transitions. This means that stochastic
process {(𝑋𝑡 , 𝑍𝑡 ), 𝑡 ≥ 0} is a Markov process.

3.2.2 Transition intensities

Transition intensities quantify the instantaneous risk of making a given transition,
depending on the state currently occupied and sojourn time. Assuming that 𝑍𝑡 only
matters in state 𝑖 , transition intensities are defined by the following limits:

𝜇𝑎𝑖𝑥+𝑡 = lim
ℎ→0

P[𝑋𝑡+ℎ = 𝑖 |𝑋𝑡 = 𝑎]
ℎ

𝜇𝑎𝑑𝑥+𝑡 = lim
ℎ→0

P[𝑋𝑡+ℎ = 𝑑 |𝑋𝑡 = 𝑎]
ℎ

𝜇𝑖𝑑𝑥+𝑡 ;𝑧 = lim
ℎ→0

P[𝑋𝑡+ℎ = 𝑑 |𝑋𝑡 = 𝑖, 𝑍𝑡 = 𝑧]
ℎ

, 𝑧 < 𝑡 .

State 𝑎 remains Markovian so that transition intensities from that state do not depend
on the time spent in the state, but only on attained age 𝑥 + 𝑡 . On the contrary, there is
an influence of the duration of stay in state 𝑖 so that transition intensities from state 𝑖
depend on both attained age 𝑥 + 𝑡 and time 𝑧 since diagnosis.

3.2.3 Data

3.2.3.1 Belgian Cancer Registry (BCR)

We consider the data available from the Belgian Cancer Registry (BCR), a national
population-based cancer registry collecting data on all new cancer diagnoses in
Belgium since the incidence year 2004. For the execution of this main task, the BCR
relies on its own specific legislation (more information can be found on the BCR
website, at kankerregister.org).

To illustrate our work, we restrict our analyses to three cancer types: melanoma
(ICD-10 C43), thyroid (ICD-10 C73) and female breast (ICD-10 C50) cancer. These
three cancer sites have been selected to evaluate the proposed insurance products
in different scenarios. Melanoma and thyroid cancer patients are known to have a
limited excess mortality compared to the general population. The situation for female
breast cancer patients is different with usually a high survival probability in the first
years after the date of diagnosis before it eventually decreases due to late cancer
recurrences. We consider only female breast cancer as there are very few registrations
regarding to male breast cancer. We also limit our analyses to patients aged 20 to
69 at diagnosis since the products considered in this paper target young adults and
active life.

A total of 24,325 persons were diagnosed with melanoma, 10,789 with thyroid
and 105,127 with breast cancer between 2004 and 2018, and were followed-up until
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Gender Cancer Age at Lost to Number of Number of
site diagnosis follow-up included cases deaths

Men Melanoma 20-34 3.38% 857 83
35-49 2.24% 2,812 354
50-69 1.70% 6,000 1,268

Thyroid 20-34 4.04% 322 6
35-49 3.21% 841 58
50-69 1.92% 1,563 297

Women Melanoma 20-34 3.22% 2,174 70
35-49 1.06% 5,267 317
50-69 1.12% 7,215 874

Thyroid 20-34 3.76% 1,435 10
35-49 2.51% 3,029 78
50-69 1.83% 3,599 390

Breast 20-34 2.87% 2,685 423
35-49 1.49% 29,007 3,419
50-69 1.07% 73,435 12,730

Total 1.40% 140,241 20,377

Table 3.1: Number of persons diagnosed with melanoma, thyroid and female breast cancer in
Belgium between 2004 and 2018 (BCR data) by gender, site and age group, together with the
percentage of lost to follow-up and the number of deaths

April 1, 2020. Follow-up thus ranged from 2 to 16 years. Only one record per patient
(with the earliest incidence date) within each cancer site was kept for patients with
multiple primary diagnoses. This is in accordance with the insurance products under
consideration which are activated at the time of the first diagnosis. A minority of
patients without national security number were excluded from the analysis. Patients
lost to follow-up (mostly due to moving abroad) and patients still alive at the end of
the follow-up period were treated as censored observations.

Table 3.1 summarizes the number of included cases, number and proportion of
deaths and percentage of lost to follow-up before April 1, 2020 per type of cancer,
gender and age group. The fraction of patients lost to follow-up per subgroup varied
from 1.06% for women with melanoma cancer aged 35-49 to 4.04% for male thyroid
cancer patients aged 20-34. The total fraction of patients lost to follow-up cases,
regardless of gender, site or age group was 1.4%. Note that the apparent large increase
in the number of included cases and deaths compared to Table 2.1 can be explained
by the longer incidence period (from a 13-year period to a 17-year period).

3.2.3.2 General population

The products considered in this paper are sold to individuals before diagnosis (thus, in
state 𝑎). This is in contrast with the study by Soetewey et al. (2021) which considered
individuals in state 𝑖 . Therefore, we also need mortality in the general population.
Belgian population life tables are available from Statbel (the Belgian statistical office)
and can be freely downloaded from the website statbel.fgov.be.

60



3.2. SEMI-MARKOV 3-STATE MODEL

3.2.4 Estimation

Transition intensities are often assumed to be piecewise constant in order to ease
actuarial calculations. Starting from state 𝑎, this means that the identities

𝜇𝑎𝑖
𝑥+𝑘+𝑡 = 𝜇𝑎𝑖

𝑥+𝑘 and 𝜇𝑎𝑑
𝑥+𝑘+𝑡 = 𝜇𝑎𝑑

𝑥+𝑘 (3.1)

hold for every integers 𝑥 and 𝑘 and fractional 0 ≤ 𝑡 < 1. Transition intensity from
state 𝑖 is displayed as a function depending on the age at diagnosis and the time
elapsed since diagnosis, i.e.

𝜇𝑖𝑑
𝑥+𝜉 ;𝑧 = �̃� (𝑥 + ⌊𝜉 − 𝑧⌋, ⌊𝑧⌋) (3.2)

for some given function �̃� with integer arguments, where ⌊·⌋ denotes rounding from
below (i.e., the integer part). The arguments of �̃� (·, ·) represent, respectively, integer
parts of age at entry in the ill state and time spent in that state. We thus work with
age last birthday at diagnosis and the number of years since diagnosis, rounded from
below. Of course, more accurate calculations can be performed by refining the time
step, if needed.

When intensities are piecewise constant, they are easily estimated by the ratio of
the observed number of transitions (diagnosis or death) to the corresponding exposure
(in the state to be left). Precisely, consider a given integer age 𝑦 and let 𝑁𝑎𝑖

𝑦 be the
number of transitions from state 𝑎 to state 𝑖 , that is, the number of diagnoses, among
individuals aged 𝑦 last birthday. Similarly, let 𝑁𝑎𝑑

𝑦 be the number of transitions from
state 𝑎 to state 𝑑 , that is, the number of deaths recorded among healthy individuals
aged 𝑦 last birthday. Let 𝐸𝑎𝑦 denote the (central) exposure to risk in state 𝑎, that is, the
time spent by all individuals aged𝑦 last birthday in state 𝑎. Because general population
mortality statistics do not record exposures but only the number of individuals at
the beginning of the period (or initial exposure to risk), we assume that transitions
occur in the middle of the period. Under (3.1), the maximum likelihood estimators
of 𝜇𝑎𝑖𝑦 and 𝜇𝑎𝑑𝑦 are respectively given by 𝑁𝑎𝑖

𝑦 /𝐸𝑎𝑦 and 𝑁𝑎𝑑
𝑦 /𝐸𝑎𝑦 and these values apply

between ages 𝑦 and 𝑦 + 1. Similar formulas hold true under (3.2) for estimating �̃� (𝑦, 𝑧)
for integer values 𝑦 and 𝑧, classifying transitions and recording exposures according
to age last birthday 𝑦 and integer number 𝑧 of years since diagnosis.

Given that BCR covers the whole population, it would be possible to subtract from
exposures and death counts available from Statbel the time lived and the number of
deaths among cancer patients. In this way, the estimated 𝜇𝑎𝑑𝑦 would only account
for mortality not related to the cancer under consideration. However, in this paper,
estimated intensities 𝜇𝑎𝑑𝑦 have been obtained from the Belgian population life tables,
so ignoring the influence of cancer mortality. The fact that population life tables
include cancer mortality is not an issue as mortality for a given cancer represents only
a small fraction of the overall mortality, and correcting for this over-representation
of the cancer being studied has, in practice, an insignificant effect. The transition
intensities from healthy to ill (cancer) and from ill to death can be estimated from
BCR data (combined with general population exposures in the former case).

Even if the general shape of the mortality and incidence curves is generally clearly
visible, erratic variations often remain. As long as these random departures do not
reveal anything about the underlying mortality or morbidity pattern, they should be
removed before entering actuarial calculations. This process is known as graduation
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in the actuarial literature. As there is no simple parametric model able to capture the
structure of mortality and morbidity, actuaries generally use a generalized additive
regression model with Poisson response distribution for transition counts, see e.g.
Denuit and Legrand (2018). The method can be summarized as follows. Under (3.1),
maximum likelihood inference can be equivalently conducted under the hypothesis
that 𝑁𝑎𝑖

𝑦 is Poisson distributed with mean 𝐸𝑎𝑦𝜇
𝑎𝑖
𝑦 . The transition intensity 𝜇𝑎𝑖𝑦 is then

represented as ln 𝜇𝑎𝑖𝑦 = 𝑠 (𝑦) for some smooth function 𝑠 (·) to be estimated from the
data, under the assumption that 𝑁𝑎𝑖

𝑦 , 𝑦 = 20, 21, . . . , 69 are mutually independent. The
function 𝑠 (·) is estimated with the help of a Poisson generalized additive model and
the resulting estimate is used to produce the transition rates adopted to perform all
actuarial calculations in the remainder of this paper. A similar procedure is followed
to produce the other transition intensities entering the calculations. The resulting
estimated transition intensities are visible in Figures 3.2-3.4. Note that the choice of a
Poisson model is motivated by its suitability for count data and its ability to model the
rate of occurrence of events, which is particularly relevant in the context of mortality
and morbidity. While a Binomial model with a logit link could also be used, especially
when dealing with proportions or probabilities, the Poisson model is often preferred
for its simplicity, flexibility, and the wide availability of efficient computational tools
(Gschlössl et al., 2011; Cameron and Trivedi, 2013; McCullagh, 2019).

Additionally, the Poisson hypothesis is not a true assumption if we consider the
equivalence between assuming a Poisson distribution and the common assumption
that the baseline hazard is piecewise constant, with changes typically occurring at
each event time. Under this condition, the exact likelihood is proportional to a Poisson
likelihood, allowing for inference to be conducted using this assumption without
genuinely assuming a Poisson response distribution. Since this piecewise constancy
can be assumed over arbitrarily small intervals, the Poisson approach is, in fact,
nonparametric (Denuit and Legrand, 2018). Regarding the type of functions used
for 𝑠 (𝑦), various smooth functions, such as splines (e.g., cubic splines) and penalized
splines, were considered. The selection of the optimal function was guided by the
Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC).
Specifically, models with different degrees of smoothness for 𝑠 (𝑦) were compared, and
the one with the lowest AIC/BIC was selected as the most appropriate. This ensured
that the chosen model adequately captures the underlying pattern without overfitting
the data.

Figure 3.2 displays the estimated intensities 𝜇𝑎𝑑𝑦 as functions of attained age 𝑦 for
males and females. Belgian regulatory life tables XR and XK are also displayed there:
life table XK defines minimum premium amount for life insurance policies with a
positive sum at risk (thus comprising mainly death benefits) whereas life table XR
defines minimum premium amount for policies with a negative sum at risk (thus
comprising mainly survival benefits). Life table XK is conservative and generates
a relatively high safety loading. Dating back to the 1990s, life table XR does not
comprise any safety loading anymore for women (but since it only defines minimal
premium amounts, insurers remain free to charge higher premiums to remain solvent).
We recognize on Figure 3.2 the exponential increase in mortality at adult ages (the
accident hump is not visible because actual values are displayed along the vertical
axis, without log transform).

Figure 3.3 displays the estimated intensities 𝜇𝑎𝑖𝑦 as functions of attained age 𝑦 for
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Figure 3.2: Estimated transition intensities 𝜇𝑎𝑑𝑦 as functions of attained age 𝑦. General popula-
tion (Statbel, continuous line), and insurance regulatory life tables XR (broken line) and XK
(dotted line)

the three types of cancer considered in this paper, separately for males and females.
We can see there that incidence curves greatly differ among the three cancer types
under consideration. In particular, after age 30, incidence for women breast cancer
largely exceeds the one for melanoma and thyroid. For males, incidence rates are
closer at young ages but exhibit different age trends.

Estimated �̃� (𝑦, 𝑧) (with 𝑦 and 𝑧 corresponding to integer part of age at diagnosis
and time since diagnosis, respectively) is displayed in Figure 3.4. We can see there
that mortality increases with age at entry and sojourn time for both genders and all
three considered cancer sites. Mortality, however, increases less rapidly with sojourn
time for young patients compared to old patients. We also see that, for patients below
age 40, mortality remains low even after a long period after diagnosis (i.e., for large
values of sojourn time). Note that since we computed these quantities considering
all causes of death, they account for both mortality from the cancer of interest and
mortality from other causes. This is in line with the application to insurance since
benefits do not vary according to the cause of death for the products considered in
this paper.

3.2.5 Transition probabilities

The following probabilities are useful to perform actuarial calculations. Considering
an individual who is healthy at age 𝑥 + 𝑡 , that is, who is in state 𝑎 at time 𝑡 , the
probability of being in state 𝑖 at time 𝑡 + 𝑢 is denoted as

𝑢𝑝
𝑎𝑖
𝑥+𝑡 = P[𝑋𝑡+𝑢 = 𝑖 |𝑋𝑡 = 𝑎],

the probability of being in state 𝑑 at time 𝑡 + 𝑢 is denoted as

𝑢𝑝
𝑎𝑑
𝑥+𝑡 = P[𝑋𝑡+𝑢 = 𝑑 |𝑋𝑡 = 𝑎],
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Figure 3.3: Estimated transition intensities 𝜇𝑎𝑖𝑦 as functions of attained age 𝑦, for different
cancer types

and the probability of being in state 𝑎 at time 𝑡 + 𝑢 is denoted as

𝑢𝑝
𝑎𝑎
𝑥+𝑡 = P[𝑋𝑡+𝑢 = 𝑎 |𝑋𝑡 = 𝑎] .

Since the time spent in state 𝑖 influences future transitions, the random variable 𝑍𝑡
also enters the transition probabilities from that state. Precisely, considering an ill
individual aged 𝑥 + 𝑡 who has been diagnosed at time 𝑡 − 𝑧, that is, who is in state 𝑖 at
time 𝑡 since time 𝑡 − 𝑧, the probability of being in state 𝑑 at time 𝑡 + 𝑢 is denoted as

𝑢𝑝
𝑖𝑑
𝑥+𝑡 ;𝑧 = P[𝑋𝑡+𝑢 = 𝑑 |𝑋𝑡 = 𝑖, 𝑍𝑡 = 𝑧]

and the probability of being in state 𝑖 at time 𝑡 + 𝑢 is denoted as

𝑢𝑝
𝑖𝑖
𝑥+𝑡 ;𝑧 = P[𝑋𝑡+𝑢 = 𝑖 |𝑋𝑡 = 𝑖, 𝑍𝑡 = 𝑧] .

By assumption, recovery is not possible. Hence, transition probabilities 𝑢𝑝𝑎𝑎𝑥+𝑡 and
𝑢𝑝

𝑖𝑖
𝑥+𝑡 ;𝑧 are in reality sojourn probabilities, i.e.

𝑢𝑝
𝑎𝑎
𝑥+𝑡 = P[𝑋𝑡+ℎ = 𝑎 for all 0 < ℎ ≤ 𝑢 |𝑋𝑡 = 𝑎]

𝑢𝑝
𝑖𝑖
𝑥+𝑡 ;𝑧 = P[𝑋𝑡+ℎ = 𝑖 for all 0 < ℎ ≤ 𝑢 |𝑋𝑡 = 𝑖, 𝑍𝑡 = 𝑧] .

Sojourn probabilities are easy to compute when transition intensities are piecewise
constant, as exponential functions of minus integrated exit rates (or cumulative
hazards). This property will be used repeatedly in the next section.

3.3 Cancer insurance products

3.3.1 Notation and specific policy conditions

Henceforth, 𝑣 (𝑠, 𝑡) is the present value at time 𝑠 of a unit payment made at time 𝑡 (with
𝑠 < 𝑡 and 𝑣 (𝑠, 𝑠) = 1). We assume that the technical interest rate used in actuarial
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(b)Men with melanoma cancer
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(c)Women with thyroid cancer
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(d)Men with thyroid cancer

Sojourn time (year)

2
4

6
8

10

12

A
ge

 a
t e

nt
ry

20

30

40

50

60

D
eath rates

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(e)Women with breast cancer

Figure 3.4: Mortality intensities according to age at diagnosis and sojourn time in the cancer
state
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calculation is constant and we denote as 𝛿 the corresponding instantaneous force of
interest, that is, 𝑣 (𝑠, 𝑡) = exp

(
− 𝛿 (𝑡 − 𝑠)

)
. Also, we denote as 𝜇𝑎•𝑥+𝑡 the exit intensity

from state 𝑎, that is, 𝜇𝑎•𝑥+𝑡 = 𝜇𝑎𝑑𝑥+𝑡 + 𝜇𝑎𝑖𝑥+𝑡 .
In this paper, we consider temporary covers where diagnosis has to occur within

the next 𝑛 years to get the insurance benefit. The insured period is thus the time
interval [0, 𝑛], in the sense that a benefit is payable only if the time of diagnosis belongs
to this interval. In principle, the insured period begins at policy issue and ends at
policy termination, subject to the following specific policy conditions. The waiting
period (or “elimination” period) 𝑤 is the period following the policy issue during
which the insurance cover is not yet operating. The waiting period aims at limiting
the effects of adverse selection, in particular because of pre-existing insured’s health
conditions. The waiting period considered here is the one specified in the contract,
not to be confused with the waiting period opening the “right to be forgotten” fixed by
the law. Sometimes, the benefit is not payable at diagnosis but only if the policyholder
has survived a certain minimum period after diagnosis, called the deferred period and
denoted as 𝑓 . This policy condition acts as a deductible and essentially purposes to
reduce the cost and hence the premium of the insurance product; premium reduction
can be particularly significant in case high mortality immediately follows diagnosis.

All premium calculations are performed on a unisex basis, in accordance with EU
regulation which prohibits any difference in insurance cover or amount of premium by
gender. Transitions observed for males and females have therefore been combined to
produce a set of intensities independent of gender, which are used for all calculations
performed in this section. For computations with respect to breast cancer, transitions
for women only have been considered as only female breast cancer cases are included.

Let us comment on the particular case of the breast cancer cover. Even if this
contract targets female policyholders, male breast cancer, though rare, does exist. To
be consistent with the anti-discrimination EU directive, the coverage has to be offered
to both males and females and priced under unisex basis. Notice that a unisex tariff
may well be based on women’s data exclusively (the requirement is that the premium
cannot differ between male and female policyholders). Even if breast cancers are
generally rare for males, they often have a very poor prognosis. This is because (i)
these cancers are often detected at a later stage compared to women, (ii) there is not
much research devoted to breast cancer affecting males and (iii) available treatments
against female breast cancer are difficult to adapt to treat male patients because of the
marked difference in hormonal status. According to the BCR, the 5-year prevalence
from 2013 to 2017 in Belgium is 398 for men compared to 47,423 for women.

Since this cover may raise some concerns related to gender-based discrimination,
let us consider the Femina cover sold in Belgium by AG Insurance (one of the market
leaders). This is a sickness insurance product with lump sum benefits paid after
diagnosis of some specific cancers affecting women, including breast cancer that may
also affect men. As its name indicates, this product clearly targets women. The policy
must be issued before the age of 60, offering a lifelong cover (subject to a severe
underwriting conditions). Health Minister had to answer some specific queries by
members of the Belgian Parliament about possible discriminatory issues related to
Femina (see Question 7 by Deputy Karin Jiroflée to Minister Kris Peeters about Femina
insurance, ref. P2321, plenary session of October 5, 2017). Minister Peeters asked
the Financial Services and Markets Authority (FSMA, protecting consumers in the
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financial sector, including bank and insurance) to determine whether this product
complies with the anti-discrimination EU Directive. The conclusion of the FSMA
study was provided during the meeting of Parliament Economy Commission of March
28, 2018. Since AG Insurance indicated that Femina cover could also be bought by men,
no discriminatory issue was found in relation to the product. This shows that even if
products are marketed to address specific needs of the male or female population and
are priced accordingly using data from the targeted population, this does not violate
the EU Directive as long as both genders can access the cover at the same conditions
(even if it is very unlikely that males will ever buy the Femina insurance cover).

3.3.2 Stand-alone covers

3.3.2.1 Lump sum

A first possibility is to pay a lump sum at diagnosis. The beneficiary can use this
amount to face out-of-pocket expenditures related to treatment. The expected present
value of a unit lump sum paid at diagnosis is given by

𝐴
𝑎;𝑎→𝑖

𝑥 ;𝑛⌉ =

∫ 𝑛

0
𝑣 (0, 𝑡)𝑡𝑝𝑎𝑎𝑥 𝜇𝑎𝑖𝑥+𝑡d𝑡 .

In case the contract specifies a waiting period𝑤 , the integral is over (𝑤,𝑛) instead of
(0, 𝑛). Since diagnosis is recorded in the BCR database, the payment date 𝑡 is easy to
check.

When transition intensities are piecewise constant, we get

𝐴
𝑎;𝑎→𝑖

𝑥 ;𝑛⌉ = 𝜇𝑎𝑖𝑥
1 − exp

(
− 𝛿 − 𝜇𝑎•𝑥

)
𝛿 + 𝜇𝑎•𝑥

(3.3)

+
𝑛−1∑︁
𝑗=1

𝜇𝑎𝑖𝑥+𝑗 exp

(
−
𝑗−1∑︁
𝑘=0

𝜇𝑎•
𝑥+𝑘 − 𝑗𝛿

)
1 − exp

(
− 𝛿 − 𝜇𝑎•𝑥+𝑗

)
𝜇𝑎•
𝑥+𝑗 + 𝛿

.

In principle, the payment could be deferred. In many policies, the benefit is not
payable until the need has lasted a certain minimum period called the deferred period
(Pitacco, 2014). Here, this would mean that the lump sum is not paid at diagnosis but
the payment is deferred later on. This may not be desired by the customers buying the
product considered here so that we do not consider this possibility. Deferred periods
may nevertheless be useful to lower premiums in case they are too expensive.

The values of 𝐴
𝑎;𝑎→𝑖

𝑥 ;𝑛⌉ obtained in the Semi-Markov 3-state model are displayed
in Figure 3.5 for ages 𝑥 ∈ {20, 21, . . . , 40}, coverage period 𝑛 = 20 years, and yearly
interest rate 1%, that is, 𝛿 = ln 1.01. Without discounting, that is, setting 𝛿 = 0 or
𝑣 (𝑠, 𝑡) = 1 for all 𝑠 < 𝑡 , 𝐴

𝑎;𝑎→𝑖

𝑥 ;𝑛⌉ is the probability of being diagnosed with cancer for a
healthy individual aged 𝑥 over the next 𝑛 years. Remember that for melanoma and
thyroid cancers, it should be interpreted as the probability on the whole population
while for breast cancer, it should be interpreted as the probability only among women.
We can see on Figure 3.5 that premium amounts remain rather low for melanoma
and thyroid cancers, but considerably increase for breast cancer because of larger
incidence within the Belgian population (culminating at 0.017 per unit of sum insured
at age 40).

67



3.3. CANCER INSURANCE PRODUCTS

20 25 30 35 40

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Age

A
x;

n
a;

a→
i

Breast
Melanoma
Thyroid

Figure 3.5: Values of 𝐴𝑎;𝑎→𝑖

𝑥 ;𝑛⌉ as function of age 𝑥 ∈ {20, 21, . . . , 40} for different cancer types
with 𝑛 = 20 and yearly interest rate 1%
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Remark 3.3.1. The single premium 𝐴
𝑎;𝑎→𝑖

𝑥 ;𝑛⌉ can be converted into a periodic one by
dividing it with

𝑎𝑎𝑎𝑥 ;𝑛⌉ =

∫ 𝑛

0
𝑣 (0, 𝑡)𝑡𝑝𝑎𝑎𝑥 d𝑡, (3.4)

with the understanding that the premium is payable until diagnosis or death.

3.3.2.2 Temporary life annuities

Insured benefits can also consist in a temporary life annuity starting at diagnosis. This
provides cancer patient with a periodic income to face out-of-pocket expenditures.
The corresponding expected present value if payments are made continuously at a
constant unit rate as long as cancer patient survives is given by

𝑎ai𝑥 ;𝑛⌉ =

∫ 𝑛

0
𝑡𝑝
𝑎𝑎
𝑥 𝜇𝑎𝑖𝑥+𝑡𝑣 (0, 𝑡)𝑎𝑖𝑖𝑥+𝑡 ;0d𝑡 (3.5)

where

𝑎𝑖𝑖𝑥+𝑡 ;0 =

∫ 𝑚

0
𝑠𝑝
𝑖𝑖
𝑥+𝑡 ;0𝑣 (𝑡, 𝑡 + 𝑠)d𝑠 (3.6)

with𝑚 denoting the maximal payment duration. Here,𝑚 is given in policy conditions
and may vary with the waiting period opening the “right to be forgotten” by the law,
that is, it may depend on cancer type.

The duration𝑚 could be determined in two ways, at least. Either we adopt the
reduced waiting periods specified by Royal decree but it would then be necessary to
add the duration of treatment since the “right to be forgotten” in the law starts at
the end of a successful treatment protocol. Or, we take the duration of the modified
“right to be forgotten” since diagnosis as determined by Soetewey et al. (2021). While
it could have been interesting to formally compare both approaches, individual data
on the type and length of treatment for each case is not reported in the BCR and
such information is not readily available. Even if it were available, the definition
of the end of the treatment remains unclear (and this is precisely the reason why
Soetewey et al. (2021) suggested to let the waiting period start from diagnosis, to
avoid endless disputes when a claim occurs). Moreover, durations of treatment are
heterogeneous even within the same cancer type, usually unpredictable. Optimal
durations are often still open to debates, see e.g. Schvartsman et al. (2019), making it
hard to include the duration of treatment in the actuarial computations. In any case,
a reduction in treatment length due to the progress made in medical treatment of
cancer would obviously lead to closer agreement between the two approaches. Since
the date of diagnosis, as recorded in national registries, offers the great advantage of
not being subject to any discussion and to allow the patient to know from the start
when the waiting period will end, we think that all parties benefit from using the date
of diagnosis instead of the end of treatment. For these reasons, we favor the second
approach in the present paper.

When transition intensities are piecewise constant, we get
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𝑎𝑎𝑖𝑥 ;𝑛⌉ =
𝑛−1∑︁
𝑗=0

∫ 𝑗+1

𝑗
𝑡𝑝
𝑎𝑎
𝑥 𝜇𝑎𝑖𝑥+𝑡𝑣 (0, 𝑡)𝑎𝑖𝑖𝑥+𝑡 ;0d𝑡

=

𝑛−1∑︁
𝑗=0

𝑗𝑝
𝑎𝑎
𝑥 𝑣 (0, 𝑗)

∫ 1

0
𝑡𝑝
𝑎𝑎
𝑥+𝑗 𝜇

𝑎𝑖
𝑥+𝑗+𝑡𝑣 ( 𝑗, 𝑗 + 𝑡)𝑎𝑖𝑖𝑥+𝑗+𝑡 ;0d𝑡

(3.7)

for 𝑗 ∈ {0, . . . , 𝑛 − 1} and 𝑡 ∈ [0, 1), where

𝑎𝑖𝑖𝑥+𝑗+𝑡 ;0 =

∫ 𝑚

0
𝑠𝑝
𝑖𝑖
𝑥+𝑗+𝑡 ;0𝑣 ( 𝑗 + 𝑡, 𝑗 + 𝑡 + 𝑠)d𝑠

=

𝑚−1∑︁
𝑘=0

∫ 𝑘+1

𝑘
𝑠𝑝
𝑖𝑖
𝑥+𝑗+𝑡 ;0𝑣 ( 𝑗 + 𝑡, 𝑗 + 𝑡 + 𝑠)d𝑠

=

𝑚−1∑︁
𝑘=0

𝑘𝑝
𝑖𝑖
𝑥+𝑗+𝑡 ;0𝑣 ( 𝑗 + 𝑡, 𝑗 + 𝑡 + 𝑘)∫ 1

0
𝑠𝑝
𝑖𝑖
𝑥+𝑗+𝑡+𝑘 ;𝑘𝑣 ( 𝑗 + 𝑡 + 𝑘, 𝑗 + 𝑡 + 𝑘 + 𝑠)d𝑠

=

𝑚−1∑︁
𝑘=0

exp

(
−
𝑘−1∑︁
𝑙=0

�̃� (𝑥 + 𝑗, 𝑙) − 𝑘𝛿

) ∫ 1

0
exp

(
− 𝑠

(
�̃� (𝑥 + 𝑗, 𝑘) + 𝛿

) )
d𝑠

=
1 − exp(−𝛿 − �̃� (𝑥 + 𝑗, 0))

𝛿 + �̃� (𝑥 + 𝑗, 0) +
𝑚−1∑︁
𝑘=1

exp

(
−
𝑘−1∑︁
𝑙=0

�̃� (𝑥 + 𝑗, 𝑙) − 𝑘𝛿

)
1 − exp(−𝛿 − �̃� (𝑥 + 𝑗, 𝑘))

𝛿 + �̃� (𝑥 + 𝑗, 𝑘)
= 𝑎𝑖𝑖𝑥+𝑗 ;0

(3.8)

which shows that 𝑎𝑖𝑖𝑥+𝑗+𝑡 ;0 can be taken out of the integral in the expression of 𝑎𝑎𝑖𝑥 ;𝑛⌉ .
Hence, we have

𝑎𝑎𝑖𝑥 ;𝑛⌉ =
𝑛−1∑︁
𝑗=0

𝑗𝑝
𝑎𝑎
𝑥 𝑣 (0, 𝑗)𝑎𝑖𝑖𝑥+𝑗 ;0

∫ 1

0
𝑡𝑝
𝑎𝑎
𝑥+𝑗 𝜇

𝑎𝑖
𝑥+𝑗+𝑡 exp(−𝑡𝛿)d𝑡

= 𝜇𝑎𝑖𝑥 𝑎
𝑖𝑖
𝑥 ;0

1 − exp(−𝛿 − 𝜇𝑎•𝑥 )
𝛿 + 𝜇𝑎•𝑥

+
𝑛−1∑︁
𝑗=1

𝜇𝑎𝑖𝑥+𝑗𝑎
𝑖𝑖
𝑥+𝑗 ;0 exp

(
−
𝑗−1∑︁
𝑘=0

𝜇𝑎•
𝑥+𝑘 − 𝑗𝛿

)
1 − exp(−𝛿 − 𝜇𝑎•𝑥+𝑗 )

𝛿 + 𝜇𝑎•
𝑥+𝑗

.

(3.9)

Values of 𝑎ai𝑥 ;𝑛⌉ are computed as a function of age at policy issue 𝑥 ∈ {20, 21, . . . , 40}
with 𝑛 = 20 and a yearly technical interest rate of 1%, that is, 𝛿 = ln 1.01. The duration
𝑚 is taken to be equal to 9 years for melanoma and 1 year for thyroid, in accordance
with the reduced waiting periods fixed in the Belgian law for these cancers. For breast
cancers, 𝑚 is taken to be the standard waiting period of 10 years. The numerical
values are displayed in Figure 3.6. We can see there that the product is cheaper

70



3.3. CANCER INSURANCE PRODUCTS

20 25 30 35 40

0.
00

0.
01

0.
02

0.
03

0.
04

Age

a x;
n

ai

Breast
Melanoma
Thyroid

Figure 3.6: Values of 𝑎ai
𝑥 ;𝑛⌉ as function of age 𝑥 for different cancer types with 𝑛 = 20 and

yearly interest rate 1%

for melanoma and thyroid cancers from age 30, thanks to lower incidence rates and
payment duration. Moreover, premiums increasing more rapidly with age are obtained
for breast cancer, because of higher incidence rates and payment duration.

3.3.3 Combined products

Combined products correspond to insurance packages where cancer insurance sup-
plements a reference cover. Several examples are described hereafter.

3.3.3.1 Premium exemption

A first possibility is to use the temporary life annuity starting at diagnosis for paying
the premiums of a reference cover, or even to reimburse a loan secured by mortgage
insurance, for instance. Calculations are performed as explained before, with benefits
matching amounts of premium or loan reimbursement.

3.3.3.2 Term-life insurance with cancer acceleration benefit

Cancer insurance can be added as a rider to a term-life insurance policy. In this case,
the amount of death benefit is (totally or partially) converted into a lump sum paid at
diagnosis. Specifically, let
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𝐴
𝑎;𝑎→𝑑

𝑥 ;𝑛⌉ =

∫ 𝑛

0
𝑣 (0, 𝑡)𝑡𝑝𝑎𝑎𝑥 𝜇𝑎𝑑𝑥+𝑡d𝑡 (3.10)

be the expected present value of a unit lump sum paid at death occurring in state 𝑎. In
practice, this amount is replaced with the XK premium if the latter is higher. Let 𝑐𝑎𝑑
be the amount of death benefit for a policyholder in state 𝑎. A proportion 𝛼 ∈ [0, 1]
of the death benefit may be paid at diagnosis and the remaining 1−𝛼 at death in state
𝑖 . For a unit death benefit, the expected present value of insurance benefits is then
given by

𝐴
(𝛼 )
𝑥 ;𝑛⌉ = 𝐴

𝑎;𝑎→𝑑

𝑥 ;𝑛⌉

+
∫ 𝑛

0
𝑡𝑝
𝑎𝑎
𝑥 𝜇𝑎𝑖𝑥+𝑡

(
𝛼𝑣 (0, 𝑡) +

∫ 𝑛−𝑡

0
𝑧𝑝
𝑖𝑖
𝑥+𝑡 ;0𝜇

𝑖𝑑
𝑥+𝑡+𝑧;𝑧 (1 − 𝛼)𝑣 (0, 𝑡 + 𝑧)d𝑧

)
d𝑡 .

(3.11)

When transition intensities are piecewise constant, we can compute the pure premium
as follows. First, the part of the pure premium corresponding to death benefits for a
healthy individual writes

𝐴
𝑎;𝑎→𝑑

𝑥 ;𝑛⌉ = 𝜇𝑎𝑑𝑥
1 − exp(−𝛿 − 𝜇𝑎•𝑥 )

𝛿 + 𝜇𝑎•𝑥

+
𝑛−1∑︁
𝑗=1

𝜇𝑎𝑑𝑥+𝑗 exp

(
−
𝑗−1∑︁
𝑘=0

𝜇𝑎•
𝑥+𝑘 − 𝑗𝛿

)
1 − exp(−𝛿 − 𝜇𝑎•𝑥+𝑗 )

𝜇𝑎•
𝑥+𝑗 + 𝛿

.

(3.12)

Second, the accelerated death benefit payable at diagnosis is covered by 𝛼𝐴
𝑎;𝑎→𝑖

𝑥 ;𝑛⌉

where the expression for 𝐴
𝑎;𝑎→𝑖

𝑥 ;𝑛⌉ can be found in (3.3). The remaining part of death
benefits involves the following integral∫ 𝑛

0
𝑡𝑝
𝑎𝑎
𝑥 𝜇𝑎𝑖𝑥+𝑡

∫ 𝑛−𝑡

0
𝑧𝑝
𝑖𝑖
𝑥+𝑡 ;0𝜇

𝑖𝑑
𝑥+𝑡+𝑧;𝑧𝑣 (0, 𝑡 + 𝑧)d𝑧d𝑡

=

∫ 𝑛

0
𝑡𝑝
𝑎𝑎
𝑥 𝜇𝑎𝑖𝑥+𝑡𝑣 (0, 𝑡)𝐴

𝑖;𝑖→𝑑

𝑥+𝑡 ;𝑛−𝑡 ⌉d𝑡
(3.13)

where

𝐴
𝑖;𝑖→𝑑

𝑥+𝑡 ;𝑛−𝑡 ⌉ =

∫ 𝑛−𝑡

0
𝑧𝑝
𝑖𝑖
𝑥+𝑡 ;0𝜇

𝑖𝑑
𝑥+𝑡+𝑧;𝑧𝑣 (𝑡, 𝑡 + 𝑧)d𝑧 (3.14)

is the present value of a unit benefit payable at death before time 𝑛 for an individual
being diagnosed with cancer at time 𝑡 . Then, (3.13) can be rewritten as

𝑛−1∑︁
𝑗=0

exp

(
−
𝑗−1∑︁
𝑙=0

𝜇𝑎•
𝑥+𝑙 − 𝑗𝛿

) ∫ 1

0
exp

(
−𝑡

(
𝜇𝑎•𝑥+𝑗 + 𝛿

) )
𝜇𝑎𝑖𝑥+𝑗𝐴

𝑖;𝑖→𝑑

𝑥+𝑗+𝑡 ;𝑛− 𝑗−𝑡 ⌉d𝑡, (3.15)

with the understanding that an empty sum is zero, where
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𝐴
𝑖;𝑖→𝑑

𝑥+𝑗+𝑡 ;𝑛− 𝑗−𝑡 ⌉ =
𝑛− 𝑗−2∑︁
𝑘=0

exp

(
−
𝑘−1∑︁
𝑙=0

�̃� (𝑥 + 𝑗 + 𝑙 ; 𝑙)
)
�̃� (𝑥 + 𝑗 + 𝑘 ;𝑘)𝑣 ( 𝑗, 𝑗 + 𝑘)∫ 1

0
exp

(
− 𝑧

(
�̃� (𝑥 + 𝑗 + 𝑘 ;𝑘) + 𝛿

) )
d𝑧

+ exp

(
−
𝑛− 𝑗−2∑︁
𝑙=0

�̃� (𝑥 + 𝑗 + 𝑙 ; 𝑙)
)
�̃� (𝑥 + 𝑛 − 1;𝑛 − 𝑗 − 1)𝑣 ( 𝑗, 𝑛 − 1)∫ 1−𝑡

0
exp

(
− 𝑧

(
�̃� (𝑥 + 𝑛 − 1;𝑛 − 𝑗 − 1) + 𝛿

) )
d𝑧

(3.16)
and ∫ 1

0
exp

(
− 𝑧

(
�̃� (𝑥 + 𝑗 + 𝑘 ;𝑘) + 𝛿

) )
d𝑧

=
1 − exp

(
− �̃� (𝑥 + 𝑗 + 𝑘 ;𝑘) − 𝛿

)
�̃� (𝑥 + 𝑗 + 𝑘 ;𝑘) + 𝛿∫ 1−𝑡

0
exp

(
− 𝑧

(
�̃� (𝑥 + 𝑛 − 1;𝑛 − 𝑗 − 1) + 𝛿

) )
d𝑧

=
1 − exp

(
− (1 − 𝑡)

(
�̃� (𝑥 + 𝑛 − 1;𝑛 − 𝑗 − 1) + 𝛿

) )
�̃� (𝑥 + 𝑛 − 1;𝑛 − 𝑗 − 1) + 𝛿

.

(3.17)

Premiums 𝐴
(𝛼 )
𝑥 ;𝑛⌉ are computed as a function of age at policy issue 𝑥 ∈ {20, 21, . . . , 40}

with 𝑛 = 20 and a yearly technical interest rate of 1%, that is, 𝛿 = ln 1.01. We take
unit death benefit and 𝛼 = 50%. The numerical values are displayed in Figure 3.7.
We can see there that the product is cheaper for melanoma and thyroid cancers for
all considered ages, thanks to lower incidence rates. Furthermore, higher premiums
increasing with age are obtained for breast cancer, because of higher incidence rates.

Remark 3.3.2. A temporary life annuity starting at diagnosis can also be financed
by “accelerating” the payment of (part of) the death benefit. Specifically, the temporary
life annuity starting at diagnosis (that is, at entry in state 𝑖) is payable continuously at
rate 𝑏𝑖 . Denoting as 𝑐𝑎𝑑 the amount of death benefit in case of transition from 𝑎 to 𝑑 ,
the residual amount of death benefit for an insured in state 𝑖 dying after having spent a
duration 𝑧 in state 𝑖 is given by

𝑐𝑖𝑑 (𝑡, 𝑧) = max{𝑐𝑎𝑑 − 𝑏𝑖𝑧, 0} = (𝑐𝑎𝑑 − 𝑏𝑖𝑧)+. (3.18)

Setting the duration payment𝑚 equal to 𝑐𝑎𝑑/𝑏𝑖 and converting the death benefit into
a temporary life annuity starting at diagnosis, the expected present value of insurance
benefits is given by

𝑐𝑎𝑑𝐴
𝑎;𝑎→𝑑

𝑥 ;𝑛⌉ + 𝑏𝑖𝑎𝑎𝑖
𝑥 ;𝑐𝑎𝑑/𝑏𝑖 ⌉

+
∫ 𝑛

0
𝑡𝑝
𝑎𝑎
𝑥 𝜇𝑎𝑖𝑥+𝑡

(∫ 𝑐𝑎𝑑/𝑏𝑖

0
(𝑐𝑎𝑑 − 𝑏𝑖𝑧)𝑧𝑝𝑖𝑖𝑥+𝑡 ;0𝜇𝑖𝑑𝑥+𝑡+𝑧;𝑧𝑣 (0, 𝑡 + 𝑧)d𝑧

)
d𝑡 .

(3.19)
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Figure 3.7: Values of 𝐴(𝛼 )
𝑥 ;𝑛⌉ as function of age 𝑥 for different cancer types with 𝑛 = 20, yearly

interest rate 1% and 𝛼 = 50%
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3.3.4 Cover option

Property loans are often accompanied with mortgage insurance that pays the balance
of the loan if the mortgagor dies. Coverage is usually awarded in the form of term
insurance with decreasing sum insured, with the amount of death benefit diminishing
as the debt is reimbursed. This is common practice in France and Belgium. If the
insurer refuses to cover the risk of premature death then the bank does not lend the
money, resulting in a barrier to property and home ownership (in case of house loan)
and to entrepreneurship (in case of professional loan).

The product considered in this section is issued in state 𝑎 and offers the beneficiary
the option to obtain mortgage insurance at standard conditions even if he or she has
been diagnosed with cancer (subject to a deferred period 𝑓 ). The contract stipulates
the characteristics of the loan (amount borrowed, amortization plan, maximal loan-
to-value of the acquired building, etc.), or puts some limits. The sum insured is
the difference between the actual single premium and the reference single premium
computed from XK life table. This can also be seen as the expected cost on the Belgian
market of a decision like the one taken by Crédit Mutuel in France. We restrict our
analysis to single premiums to reduce risk for the insurer.

Let Π𝑋𝐾𝑥+𝑡 be the reference single premium for mortgage insurance securing the
loan described in the policy conditions, at age 𝑥 + 𝑡 . The actual premium, given the
extra mortality related to cancer for a patient aged 𝑥 + 𝑡 who has been diagnosed at
time 𝑡 − 𝑧 is denoted as Π𝑖𝑥+𝑡 ;𝑧 . The sum insured is the difference between these two
premiums. To avoid under-pricing, we consider that policyholders will exercise their
option at the worst time for the insurer. This leads to the worst-case expected present
value

EPVwc (𝑥, 𝑛, 𝑓 ) = max
𝑠

∫ 𝑛

0
𝑡𝑝
𝑎𝑎
𝑥 𝜇𝑎𝑖𝑥+𝑡 𝑓 +𝑠𝑝

𝑖𝑖
𝑥+𝑡 ;0

(
Π𝑖
𝑥+𝑡+𝑓 +𝑠 ;𝑓 +𝑠 − Π𝑋𝐾

𝑥+𝑡+𝑓 +𝑠

)
𝑣 (0, 𝑡 + 𝑠 + 𝑓 )d𝑡

(3.20)
where 𝑛 is the coverage period and 𝑓 is the deferred period stipulated by the contract.

We consider here the same reference outstanding loan balance cover as in Soetewey
et al. (2021). Specifically, we consider a home loan of duration 20 years (typical duration
in Belgium). The mortgage insurance applicant aged 𝑥 borrows an amount 100,000
at interest rate 2%. The technical interest rate for mortgage insurance is 1% and the
insurance cover is over the full term of 20 years. These characteristics have been
chosen as they represent a rather standard setting.

It is well documented that excess mortality generally decreases with time since
diagnosis for most cancer types. Figure 6 in Soetewey et al. (2021) shows that Π𝑖𝑥+𝑡 ;𝑧
peaks at 𝑧 = 0 for thyroid cancer at ages 30 and 50 and melanoma at age 50 or 𝑧 = 1
for melanoma at age 30 before decreasing for larger values of 𝑧. The upper panel
in Figure 3.8 displays premiums Π𝑖

𝑥+𝑡+𝑘 ;𝑘 and Π𝑋𝐾
𝑥+𝑡+𝑘 for 𝑥 + 𝑡 = 30 and 40, and time

𝑘 since diagnosis in {0, 1, . . . , 10}. The corresponding differences are shown in the
lower panel in Figure 3.8. When the difference is negative, the cover described in this
section is not needed since cancer patients can be covered at standard premium rates.
We can see there that the maximum is generally attained at 𝑠 = 0 when 𝑓 ≥ 2.

Let us take 𝑓 = 2 so that access to mortgage insurance at standard rate is granted
two years after diagnosis. This is expected to address patients’ needs since it is very
unlikely that they wish to buy a house right after diagnosis, the two-year deferred
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Figure 3.8: Values of premiums Π𝑖
𝑥+𝑡+𝑘 ;𝑘 and Π𝑋𝐾

𝑥+𝑡+𝑘 for 𝑥 + 𝑡 = 30 and 40, and time 𝑘 since
diagnosis in {0, 1, . . . , 10}, with 𝑛 = 20, yearly interest rate 1% and the reference outstanding
balance cover
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period being devoted to the acute phase of treatment. Notice that this can be offered
at no cost for thyroid cancer since Π𝑖𝑥+𝑡 ;𝑡 falls below Π𝑋𝐾𝑥+𝑡 two years after diagnosis in
that case. The worst-case expected present value is then equal to

EPVwc (𝑥, 𝑛, 2) =
𝑛∑︁
𝑗=0

𝑣 (0, 𝑗) 𝑗𝑝𝑎𝑎𝑥∫ 1

0
𝑡𝑝
𝑎𝑎
𝑥+𝑗 𝜇

𝑎𝑖
𝑥+𝑗 2𝑝

𝑖𝑖
𝑥+𝑗+𝑡 ;0𝑣 ( 𝑗, 𝑗 + 𝑡 + 2)

(
Π𝑖𝑥+𝑗+2;2 − Π𝑋𝐾𝑥+𝑗+2

)
d𝑡

(3.21)

where we have assumed that insurance premiums only depend on integer age. When
transition intensities are piecewise constant, we get

𝑛−1∑︁
𝑗=0

exp

(
−
𝑗−1∑︁
𝑙=0

𝜇𝑎•
𝑥+𝑙 − 𝑗𝛿

)
𝜇𝑎𝑖𝑥+𝑗 exp(−2𝛿)∫ 1

0
exp

(
−𝑡

(
𝜇𝑎•𝑥+𝑗 + 𝛿

) )
exp

(
− �̃� (𝑥 + 𝑗 ; 0) − �̃� (𝑥 + 𝑗 + 1; 1)

) (
Π𝑖𝑥+𝑗+2;2 − Π𝑋𝐾𝑥+𝑗+2

)
d𝑡

=

𝑛−1∑︁
𝑗=0

exp

(
−
𝑗−1∑︁
𝑙=0

𝜇𝑎•
𝑥+𝑙 − 𝑗𝛿

)
𝜇𝑎𝑖𝑥+𝑗 exp(−2𝛿)

1 − exp
(
− 𝜇𝑎•𝑥+𝑗 − 𝛿

)
𝜇𝑎•
𝑥+𝑗 + 𝛿

exp
(
− �̃� (𝑥 + 𝑗 ; 0) − �̃� (𝑥 + 𝑗 + 1; 1)

) (
Π𝑖𝑥+𝑗+2;2 − Π𝑋𝐾𝑥+𝑗+2

)
.

(3.22)
The upper panel in Figure 3.9 displays the sum insured Π𝑖𝑥+𝑡+2;2 − Π𝑋𝐾𝑥+𝑡+2 according to
age 𝑥 + 𝑡 ∈ {20, 21, . . . , 50}. We can see that the differences are negative for thyroid
cancer so that the product is not needed in that case, as patients can be covered at
standard rates after the deferred period. Amounts EPVwc (𝑥, 𝑛, 2) are displayed in the
lower panel of Figure 3.9 for 𝑥 ∈ {20, 21, . . . , 40}, with 𝑛 = 20, yearly interest rate 1%
and the reference outstanding balance cover. Only melanoma and breast cancer are
considered since the cover is not relevant for thyroid cancer. The cost appears to be
moderate for melanoma but much higher for breast cancer. This results again from
the higher incidence of breast cancer compared to melanoma.

3.4 Discussion

In this paper, we have developed a Semi-Markov 3-state model for designing and
pricing cancer insurance products on a market where the “right to be forgotten”
has been implemented. Different covers are proposed and three cancer types are
considered for illustration, with different incidence rates and survival prognosis. It is
shown that insurance products can be developed to address the particular needs of
patients during the waiting period opening the “right to be forgotten”, but that costs
greatly vary according to cancer type.

Insurance covers are typically limited to the first cancer occurrence. Several
types of cancer can thus easily be combined into a single model to design products
offering protection against more than just one cancer site. Considering the three
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Figure 3.9: Differences Π𝑖
𝑥+𝑡+2;2 −Π𝑋𝐾

𝑥+𝑡+2 according to age 𝑥 + 𝑡 ∈ {20, 21, . . . , 50} in the upper
panel and EPVwc (𝑥, 𝑛, 2) for 𝑥 ∈ {20, 21, . . . , 40}, with 𝑛 = 20, yearly interest rate 1% in the
lower panel
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cancer types considered in this paper, this would result in a hierarchical Semi-Markov
model with 5 states, with state 𝑖 replaced with three states 𝑖1, 𝑖2 and 𝑖3 corresponding
respectively to thyroid, melanoma and breast cancer, with transitions from state 𝑎 to
states {𝑖1, 𝑖2, 𝑖3, 𝑑} and from each 𝑖1, 𝑖2 and 𝑖3 to state 𝑑 . The extension to this more
general setting is thus straightforward. Of course, distinguishing among cancer types
is only relevant if coverage conditions vary with cancer site (for premium calculation,
since distinguishing cancer types provides the actuary with a better understanding of
cash flows, for instance to compute accurate reserves once a claim has been filed).

In Belgium, new diseases like, amongst others, HIV, some types of hepatitis and
leukemia qualified for the “right to be forgotten”. Even if the present paper restricts
to cancer insurance, a more general critical illness approach would theoretically
also be possible. The main difficulty however is the lack of nationwide registry for
these diseases. An appropriate source of reliable and representative data must thus
be identified to perform actuarial calculations assessing the actual costs of these
extensions to the “right to be forgotten”.

3.5 Additional notes

As mentioned in Section 2.7, insurers have a keen interest in assessing the confidence
level of the point estimates calculated. In this section, a potential solution is presented
as example.

If premium distributions were known, confidence intervals could easily be com-
puted. However, premiums do not follow a specific distribution. An alternative
approach involves employing the bootstrap method to estimate confidence intervals.
Nonetheless, this method requires multiple observations. In the context of this study,
there exists only a singular premium observation per age and cancer type combina-
tion. Consequently, the proposed methodology is as follows. For each integer age,
a local dataset is constructed comprising the value at that age and the values at the
two preceding and two succeeding ages, ensuring a sample size of five observations
per age. This approach accounts for the fact that individuals close in age may share
similar characteristics and thus should be grouped together. For example, a person
aged 25 years and 364 days would likely have similar risk characteristics to someone
aged 26 years and 1 day. Including two ages above and below the target age cap-
tures this inherent variation without extending too far into significantly different age
groups. To compute the confidence intervals, 1,000 bootstrap samples are generated
by resampling with replacement from this local dataset. For each bootstrap sample,
the mean value is calculated, forming a distribution of means for each age. The 95%
confidence intervals are then derived from this bootstrap distribution by determin-
ing the 2.5𝑡ℎ and 97.5𝑡ℎ percentiles. This nonparametric bootstrap approach allows
for robust estimation of confidence intervals without relying on strict parametric
assumptions, providing a more flexible and reliable measure of uncertainty around
the point estimates, especially in cases of small sample sizes and potential deviations
from normality. As an example, Figure 3.5 has been adapted following this approach
(see Figure 3.10). As expected, the 95% confidence intervals tend to widen when
neighboring values are more dissimilar because greater variability among adjacent
data points results in a broader range of potential outcomes, reflecting increased
uncertainty in the estimation process.
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Figure 3.10: Adaptation of Figure 3.5 to include 95% confidence intervals

While definitely not flawless, this approach helps to better illustrate the uncer-
tainty associated with the estimated premiums. Providing a range for the premiums is
essential for assessing uncertainty and selecting a reasonable value within this range.
By incorporating these intervals, we enhance the analysis’s robustness and provide a
clearer understanding of the variability around our estimates, increasing confidence
in our conclusions.

In line with the confidence intervals proposed in Section 2.7, one could consider
applying the same approach in the worst-case scenario. For example, for the product
“𝑎 to 𝑖” considered, the worst-case scenario would involve a decrease in mortality
from “𝑎 to 𝑑” combined with an increase in diagnoses from “𝑎 to 𝑖 .” Therefore, using
the lower confidence limits in the first case and the upper confidence limits in the
second case should provide an upper bound on the premium. Conversely, to obtain
a lower bound, one should use the upper confidence limits in the first case and the
lower confidence limits in the second case.

Inclusion of the 95% confidence intervals for the other financial products developed
in this chapter, as well as finding other methods to assess premiums uncertainty, are
left for future research. Although the current approach to constructing confidence
intervals offers valuable insights, it warrants further validation. Simulations could
be conducted to assess the coverage and accuracy of these intervals, ensuring they
provide reliable measures of uncertainty. This additional analysis would strengthen
the findings and address potential concerns about the robustness of the proposed
method.
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4

This chapter is based on an article carrying the same name as the chapter and submit-
ted jointly with Pr. Catherine Legrand, Pr. Michel Denuit and Dr. Geert Silversmit in
BMC Medical Research Methodology in 2024. Note that a section has been added at
the end of the chapter (which is not present in the submitted manuscript). This final
section presents the main findings published so far in the literature and which are
related to the topic of this chapter.

Several concepts which have been introduced in Chapters 2 and 3 are used again
in the present chapter. Chapters 2 and 3 are targeted to an actuarial audience, whereas
the present chapter is intended for a biostastical public. Therefore, throughout this
chapter, some notations introduced in Chapters 2 and 3 (and which are widely known
in the actuarial literature) had to be adapted for a more biostatistical audience. A first
adaptation, which remains a minor one, concerns the random variable giving the state
occupied at time 𝑡 . It was denoted 𝑋𝑡 in Chapters 2 and 3. It is denoted 𝑋 (𝑡) in the
present chapter. Similarly, the random variable defining the time spent in the state
occupied at time 𝑡 was denoted 𝑍𝑡 and is now denoted 𝑍 (𝑡). Transition intensities
from state 𝑖 to state 𝑗 , used to be denoted 𝜇𝑖 𝑗 , are denoted 𝛼𝑖 𝑗 in the present chapter.
Transition probabilities from state 𝑖 to state 𝑗 , 𝑝𝑖 𝑗 , are now denoted 𝑝𝑖 𝑗 . Moreover, the
states were abbreviated as 𝑎, 𝑖 and 𝑑 (for 𝑎𝑐𝑡𝑖𝑣𝑒 (i.e., healthy), 𝑖𝑙𝑙 and 𝑑𝑒𝑎𝑑), but are
now referred to as 0, 1 and 2, respectively. A major difference concerns how age and
time are defined. In Chapters 2 and 3, in order to comply with the usual notations
used in the actuarial community, 𝑥 corresponded to age and 𝑡 referred to time. In this
chapter, age is denoted as 𝑡 (which can be seen as the time since birth). Moreover,
in survival analysis, 𝑇 is known to be a non-negative continuous random variable
representing the real time to the event of interest. In this chapter, 𝑇𝑖 𝑗 is the age at
which an individual moves from state 𝑖 to state 𝑗 (which we recall are 0, 1 or 2).

Abstract
Over the last decade, the number of years of life lost (YLL) became a popular tool
in biostatistics and epidemiology to measure discrepancies in life expectancy or
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mortality between a cohort of patients and the general population. Its prominence in
the literature is primarily due to its ease of interpretation and because information
on the cause of death is not required. Moreover, multi-state models are a powerful
statistical approach to study the evolution of individuals between several “states”.
Derived from data collected by the Belgian Cancer Registry, encompassing 161,007
cases of melanoma, thyroid, and female breast cancer, a 3-state (healthy–cancer–
death) illness-death model is used to illustrate how it can be applied to cancer registry
data to estimate the incidence risk, and the number of years of life lost due to cancer
at different ages at diagnosis and given that the patient survived some years after
diagnosis. Results suggest that the probabilities of being diagnosed with cancer over
the next 20 years for a healthy individual remain rather low for melanoma and thyroid
cancers for both sexes, but considerably increase with age for female breast cancer.
Results also suggest that, for female breast cancer, the number of years of life lost
before the age of 70 years due to cancer is highest when diagnosed at young ages
and then decreases with age at diagnosis, whereas for melanoma and thyroid cancers,
it peaks when diagnosed at later ages (between 35 and 55 years depending on the
cancer and sex). It also turns out that the number of years of life lost before the age
of 70 due to cancer is larger for men than for women for both melanoma and thyroid
cancers. Last, it is found that, for melanoma and thyroid cancer patients diagnosed
between the age of 20 and 70 years, once they have survived their cancer for 10 years,
the number of years of life lost before the age of 70 due to cancer remains below
one year. This indicates that, up to the age of 70 years, these patients lose a limited
number of years of life due to cancer compared to the general population.

Keywords: Years of life lost; Multi-state models; Critical illness; Cancer mortality.

4.1 Introduction and motivation

Over the last decade, the number of years of life lost (YLL) became a popular tool
in biostatistics and epidemiology to measure discrepancies in life expectancy or
mortality. The idea behind YLL is to quantify the number of years of life a specific
cohort of patients has lost due, for example, to a given disease, compared to the general
population. This measure, as defined by Andersen (2013) and Andersen et al. (2013),
has the advantage (compared to others such as the hazard ratio or excess hazard) that
it is measured on a time metric (usually in years) making its interpretation easy for
policy-makers and meaningful for gauging public health outcomes (Latouche et al.,
2019).

It was first introduced to measure the reduction in life expectancy for a group
of individuals compared to a hypothetical cohort where no one dies before a given
age (Andersen, 2013). However, in most situations, it may seem more natural to
measure the reduction in life expectancy for a group of individuals compared to a
reference population (where some years of life are lost because of some standard or
background mortality rates). In this sense, YLL can be used to estimate the number
of years a specific cohort of patients (cancer patients, for instance) are expected to
lose compared to the general population (i.e., the reference population to which the
cancer cohort is compared). The difference between the life expectancy of the general
population and the one of the considered cohort of patients corresponds to YLL. This
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measure is sometimes referred to as excess YLL because it is the number of years
of life patients lose in excess of that seen in the general population. The larger this
measure, the more important the societal burden of the disease or condition.

Similarly to the excess hazard, information about the cause of death is not required
to estimate YLL, making it a practical measure for population-based studies in which
the cause of death is often unavailable or unreliable (Percy et al., 1981). There are two
types of YLL. First, the number of years of life lost by the entire cohort, which can be
denoted YLL𝑐 , and which is of interest if one wants to estimate at one point in time
the global number of years of life lost due to a particular disease (see for instance
Aragon et al. (2008) who rank leading causes of premature death based on the total
number of years of life lost due to each cause). This may be used to answers questions
such as “How many years of life are lost in the population due to cancer?” (Andersson
et al., 2013). It is of great interest to economists, governments and policy-makers to
determine which condition or disease has the largest negative impact on citizens and
society as a whole (for resource allocation, public health priorities, cancer control
progress, etc.). Second, the number of years of life lost (on average) per individual,
which we denote YLL𝑖 , and which quantifies how many years of life a patient is
expected to lose (see for example Belot et al. (2019) or Latouche et al. (2019)). It
answers questions such as “How much does the life expectancy of an individual on
average change if diagnosed with cancer?”. See examples with common cancers in
Chu et al. (2008) who measure health impacts on society using YLL𝑖 . In this situation,
YLL𝑖 can be seen as an average per person, whereas YLL𝑐 can be seen as the sum of the
years of life lost for each individual in a patient cohort. See a comprehensive overview
of the years difference measures in Manevski et al. (2023). Note that individuals do not
necessarily lose years compared to the general population; they may also gain years.
This is the case, for instance, in the study of the long-term survival of elite athletes for
which survival may be better than that of the general population (Antero-Jacquemin
et al., 2018).

From a general point of view, the major advantages of YLL𝑐 and YLL𝑖 are that (i)
it is measured on a time metric (usually in years), facilitating its interpretation and
communication (Baade et al., 2015; Licher et al., 2019), (ii) information on the cause of
death is not needed to estimate it, and (iii) it can be computed for any time horizon
and for a comprehensive list of causes of death. Andersen (2017) suggested several
measures of life years lost among patients with a given disease in the framework of a
(Markov or non-Markov) illness-death model, illustrated using data on Danish male
patients with bipolar disorder. The main goal of the present study is to demonstrate
how YLL𝑖 can be easily estimated from a multi-state model and what the advantages
are of doing so, with a focus on two applications using data on Belgian cancer patients.
Their use in the context of the right to be forgotten will also be discussed.

Multi-state models (MSM) are a powerful statistical approach to study the evolu-
tion of individuals between several “states” (see Andersen et al. (2012) and Hougaard
(1999) for a general review). MSM can be seen as an extension of classical survival
analysis, in which only the transition from being alive to being dead is considered
(De Wreede et al., 2010; Geskus, 2019; Putter et al., 2007). Unlike classical survival
models, MSM are used to model processes which go from an initial state (for instance
“healthy”) to a terminal (also referred as absorbing) state (for example “dead”), but
where more than two states are considered, some being transient. For example, con-

83



4.1. INTRODUCTION AND MOTIVATION

healthy (state 0) ill (state 1)

dead (state 2)

Figure 4.1: Visual representation of the ‘illness-death model’ without recovery for cancer
patients

sidering that the “healthy” state is portioned into two or more intermediate states
corresponding to specific stages of a disease (Meira-Machado et al., 2009). Thus, MSM
offer a complete and informative representation of the occurrence of intermediate
events on the pathway to some final event, notably via transition probabilities which
have a natural interpretation (Andersen and Pohar Perme, 2008; Touraine et al., 2016).

In this paper, a 3-state model, assuming that an individual can either be “healthy”,
“ill” (diagnosed with cancer), or “dead” is considered. We will see that in our context,
we actually only need to consider transitions from healthy to ill, healthy to dead and
ill to dead. While excluding the possibility to transit from ill back to healthy can be
interpreted as assuming that cancer is a permanent condition (which is debatable), we
actually decided not to consider it following the parsimony principle since it would
not bring any useful information in our context. Indeed, as it will be shown later,
in our type of applications, distinguishing the health status of the patient between
diagnosis and death is actually not required. This non-reversibility greatly simplifies
the computations, as in this case, our 3-state process is hierarchical and trajectories
can be described in terms of just a few random variables (Denuit et al., 2019). See
Figure 4.1 for a visual representation of the model, often referred in the literature as
the “(3-state) illness-death model” without recovery. More advanced types of MSM
(known as reversible MSM) can be used in case recoveries are possible and has to be
taken into account for the application considered. Note that this 3-state model is, in
its mathematical concept, similar to the well-known SIR model (susceptible – infected
– recovered) in epidemiology (Anderson, 1991; Kermack and McKendrick, 1927). The
difference with our 3-state illness-death model is that a susceptible individual must go
through the infectious state before being recovered, he/she cannot go directly from
“susceptible” to “recovered”.

The key contribution of this paper is thus to illustrate how disease incidence risk
and YLL𝑖 can be estimated based on a Semi-Markov 3-state MSM using cancer registry
data, and what type of useful information can be obtained out of it. Furthermore, the
main advantage of computing these quantities in a Semi-Markov context is that it
allows to take into account the number of years a patient survived after diagnosis. To
the best of our knowledge, most studies refer to the number of years of life lost at the
time of diagnosis, without taking the time survived since diagnosis into consideration.
This is a major difference, given that time spent in the ill state is known to have an
influence on survival for cancer patients.

The remainder of this paper is laid out as follows. Section 4.2 presents the data
used to perform the present study. Section 4.3 details the methods and tools, with
a focus on Semi-Markov MSM. Section 4.4 illustrates two useful MSM-based health
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indices. The final section (Section 4.5) concludes the paper with a discussion.

4.2 Data

For these applications, the data available from the Belgian Cancer Registry (BCR) are
considered. The BCR is a national population-based cancer registry collecting data on
all new cancer diagnoses in Belgium since the incidence year 2004. For the execution
of this main task, the BCR relies on its own specific legislation (more information can
be found on the BCR website, at kankerregister.org).

To illustrate our work, the methods were applied to three cancer types: melanoma
(ICD-10 C43), thyroid (ICD-10 C73) and female breast (ICD-10 C50) cancer. These three
cancer sites have been selected to evaluate the proposed method in different scenarios.
Melanoma and thyroid cancer patients are known to have a limited excess hazard
compared to the general population and a high survival probability (CRUK, 2023b,c;
NHS Digital, 2023; Soetewey et al., 2021). The situation for female breast cancer
patients is different with usually a high survival probability in the first years after the
date of diagnosis before it eventually decreases due to late cancer recurrences (CRUK,
2023a). Only female breast cancer is considered as there are too few registrations
regarding male breast cancer.

Out of a total of 161,007 cases, melanoma, thyroid and breast cancer represent,
respectively, 29,213 (18.1%), 12,241 (7.6%) and 119,553 (74.3%) cases diagnosed between
2004 and 2020. Patients were followed-up until April 11, 2022, resulting in a follow-up
ranging from 2 to 18 years. Only one record per patient (with the earliest incidence
date) within each cancer site was kept for patients with multiple primary diagnoses.
A minority of patients without national security number were excluded from the
analysis. Patients lost to follow-up (mostly due to moving abroad) and patients still
alive at the end of the follow-up period were treated as censored observations.

Table 4.1 summarizes the number of included cases, number and proportion of
deaths and percentage of lost to follow-up before April 11, 2022 per type of cancer,
sex and age group. The fraction of patients lost to follow-up per subgroup varied
from 1.31% for women with breast cancer aged 50-69 to 4.1% for male thyroid cancer
patients aged 20-34. The total fraction of patients lost to follow-up cases, regardless
of sex, site or age group was 1.64%. Moreover, mean age at diagnosis was 50.5 years
(standard deviation (𝑆𝐷) = 12.1), 48.1 years (𝑆𝐷 = 12.4) and 54.6 years (𝑆𝐷 = 9.5) for
melanoma, thyroid and breast cancer, respectively.

In order to estimate the number of years of life lost, mortality in the cancer cohort
must be compared to the expected mortality in the general population. Mortality in
the general population is therefore also needed. The complete Belgian population is
also required to estimate the transition from healthy to ill (which cannot be estimated
based on the cancer registry data). These general population data come from the
Belgian population life tables, which are available from Statbel (the Belgian statistical
office) and can be freely downloaded from the website statbel.fgov.be.

Note that as population life tables take into account all deaths, those due to the
cancer of interest are also included. Nonetheless, it is commonly assumed that the
fact that population life tables include cancer mortality is not an issue since mortality
for a given cancer represents only a small fraction of the overall mortality. Correcting
for this mortality of the cancer being studied has, in practice, an insignificant effect
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Sex Cancer Age at Lost to Number of Number of
site diagnosis follow-up included cases deaths

Men Melanoma 20-34 3.72% 969 94
35-49 2.66% 3,266 404
50-69 1.70% 7,460 1,583

Total 11,695 2,081
Men Thyroid 20-34 4.10% 366 6

35-49 3.12% 961 67
50-69 2.14% 1,773 379

Total 3,100 452
Women Melanoma 20-34 3.62% 2,488 78

35-49 1.47% 6,137 382
50-69 1.35% 8,893 1,112

Total 17,518 1,572
Women Thyroid 20-34 3.80% 1,607 14

35-49 2.67% 3,449 107
50-69 2.06% 4,085 484

Total 9,141 605
Women Breast 20-34 2.76% 3,112 502

35-49 1.78% 32,743 4,058
50-69 1.31% 83,698 15,946

Total 119,553 20,506

Table 4.1: Number of persons diagnosed with melanoma, thyroid and female breast cancer
in Belgium between 2004 and 2020 (BCR data) by sex, site and age group, together with the
percentage of lost to follow-up and the number of deaths
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on survival of the general population (Esteve et al., 1994; Oksanen, 1998).

4.3 MSM and YLL for cancer patients

A MSM, which is a model for time-to-event data, consists of states and transitions
between pairs of states that reflect the disease and death mechanism in medical ap-
plications. Main motivations for using a MSM are often to obtain (i) more biological
insight into the disease or recovery process of a patient, and (ii) more accurate predic-
tions than standard models neglecting intermediate states. Indeed, by incorporating
intermediate events, predictions are adjusted in the course of time, giving more precise
information about survival duration (De Wreede et al., 2010; Geskus, 2019).

When considering MSM, the following concepts must be distinguished: (1) Marko-
vian and Semi-Markovian, and (2) homogeneous and non-homogeneous models.
These concepts can be defined as follows

■ Markovian: what happens next only depends on the current state, not on what
happened before.

■ Semi-Markovian: what happens next depends on the current state and how
long ago it was reached (so the duration in that state).

■ Homogeneous or time-homogeneous: transition between states do not depend
on time (but time seen as age and not duration in the state, hence the name
time-homogeneous).

■ Non-homogeneous or time-inhomogeneous: transition between states may
depend on time (seen as age, not duration).

For a non-homogeneous Markov model, the time until the next state is allowed
to depend on the current state and the individual’s age (i.e., time). For a homoge-
neous semi-Markov model, the time until the next state is allowed to depend on the
current state and the time since he/she entered this state (i.e., duration). For a non-
homogeneous Semi-Markov model, both aspects (time and duration) are combined:
the time until the next state is allowed to depend on the current state, the time since
he/she entered this state, and his/her age.

Thus, in our context, assuming a homogeneous Markov illness-death model would
mean to consider that the expected length of stay in the ill state of a cancer patient
depends only on the current state. In other words, it would assume that two cancer
patients have the same expected length of stay in the ill state (and thus, the same
mortality), even if one has been diagnosed for one year and the other for 10 years.
However, it is known that mortality for cancer patients (and thus expected length
of stay in the ill state) varies with time since diagnosis (and thus sojourn time)
(Soetewey et al., 2022). Therefore, the Markovian assumption does not hold for our
situation, and a Semi-Markov assumption taking also into consideration the time
spent in the ill state is preferable. Moreover, the non-homogeneous assumption is
also preferable as transitions may depend on patient’s age. In this non-homogeneous
Semi-Markov case (also known as general Semi-Markov), the expected length of stay
in the ill state of a cancer patient will thus depend on both the age and the time since
diagnosis. This assumption is important because it allows to update the patient’s life
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expectancy conditional on the fact that he/she survived up to that time and a given
specific age. This is the reason why our calculations are performed in the context of a
non-homogeneous Semi-Markov illness-death model.

The whole process from birth to death of any individual can be defined formally
as a random process over time 𝑋 = [𝑋 (𝑡), 𝑡 ≥ 0], where 𝑋 (𝑡) gives the state occupied
at age 𝑡 . Here, 𝑡 corresponds to the time since birth. In the irreversible illness-death
process depicted in Figure 4.1, 𝑋 (𝑡) has values in state space S = {0, 1, 2} where state
0 corresponds to the “healthy” state, state 1 to the “ill” state and state 2 to the “dead”
state. Individuals are initially with no cancer detected, thus considered as healthy.
Then, they may be diagnosed with cancer and die, or they may die without having
been diagnosed with cancer.

More formally, let’s denote by 𝑇𝑖 𝑗 the age at which the patient moves from state 𝑖
to state 𝑗 . For patients diagnosed with cancer at age 𝑇01 and who died at age 𝑇12, we
have

𝑋 (𝑡) = 0 0 ≤ 𝑡 < 𝑇01,

𝑋 (𝑡) = 1 𝑇01 ≤ 𝑡 < 𝑇12 and
𝑋 (𝑡) = 2 𝑡 ≥ 𝑇12.

For patients without cancer who died at age 𝑇02, we have

𝑋 (𝑡) = 0 0 ≤ 𝑡 < 𝑇02 and
𝑋 (𝑡) = 2 𝑡 ≥ 𝑇02.

Remember that it is assumed that a cancer patient stays in the “ill” state until he/she
dies (i.e., the transition from state 1 to state 0 is not allowed). So, in fact the state “ill”
should rather be understood as “having been diagnosed with a cancer”.

In our context, we have to assume that the time spent in state 𝑖 influences transition
to the next state. Therefore, the random variable 𝑍 (𝑡) is introduced, and defined as
the time spent in the state occupied at time 𝑡 . Formally,

𝑍 (𝑡) = max{𝑧 ≤ 𝑡 |𝑋 (𝑡) = 𝑋 (𝑡 − ℎ) for all 0 ≤ ℎ ≤ 𝑧}.

For an individual in state 𝑖 at time 𝑡 , 𝑍 (𝑡) is the time since entry in the state (i.e.,
time from birth for 𝑖 = 0 and time from diagnosis for 𝑖 = 1). Henceforth, we work
under the Semi-Markov assumption: the current state 𝑋 (𝑡) and the time 𝑍 (𝑡) spent in
the current state influence future transitions. This means that the stochastic process
[(𝑋 (𝑡), 𝑍 (𝑡)), 𝑡 ≥ 0] is a Markov process.

A fundamental concept in multi-state models is the transition intensities, which
govern movements between the different states depending on the state currently
occupied and the sojourn time. The following transition intensities fully describe the
process in an illness-death model:

𝛼01 (𝑡) = lim
ℎ→0

P[𝑋 (𝑡 + ℎ) = 1|𝑋 (𝑡) = 0]
ℎ

(4.1)
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𝛼02 (𝑡) = lim
ℎ→0

P[𝑋 (𝑡 + ℎ) = 2|𝑋 (𝑡) = 0]
ℎ

(4.2)

𝛼12 (𝑡 ; 𝑧) = lim
ℎ→0

P[𝑋 (𝑡 + ℎ) = 2|𝑋 (𝑡) = 1, 𝑍 (𝑡) = 𝑧]
ℎ

(4.3)

where 𝛼𝑖 𝑗 (·) are the transition intensities between state 𝑖 and state 𝑗 (𝑖 = 0, 1; 𝑗 = 1, 2).
Transition intensities from state 0 depend on the time spent in that initial state
through attained age. Furthermore, there is an influence of the duration of stay in
state 1 so that transition intensities from state 1 depend on both attained age and
time 𝑧 since diagnosis. In our context, 𝛼01 (·), 𝛼02 (·) and 𝛼12 (·; ·) are, respectively,
the intensity of developing cancer, the death intensity without cancer and the death
intensity with cancer. Also, the exit intensity from state 0 is denoted 𝛼0• (𝑡), that is,
𝛼0• (𝑡) = 𝛼01 (𝑡) + 𝛼02 (𝑡).

Transition probabilities are meaningful to estimate in addition to transition inten-
sities. Considering an individual who is healthy at age 𝑡 , that is, who is in state 0 at
time 𝑡 , the probability of being in state 1 at time 𝑡 + ℎ is denoted as

𝑝01 (𝑡, 𝑡 + ℎ) = P[𝑋 (𝑡 + ℎ) = 1|𝑋 (𝑡) = 0],

the probability of being in state 2 at time 𝑡 + ℎ is denoted as

𝑝02 (𝑡, 𝑡 + ℎ) = P[𝑋 (𝑡 + ℎ) = 2|𝑋 (𝑡) = 0],

and the probability of still being in state 0 at time 𝑡 + ℎ is denoted as

𝑝00 (𝑡, 𝑡 + ℎ) = P[𝑋 (𝑡 + ℎ) = 0|𝑋 (𝑡) = 0] .

Since the time spent in state 1 influences future transitions, the random variable 𝑍 (𝑡)
also enters the transition probabilities from that state. Precisely, considering an ill
individual diagnosed at age𝑇01 and aged 𝑡 = 𝑇01 + 𝑧, that is, who is in state 1 since the
last 𝑧 = 𝑡 −𝑇01 years, the probability of being in state 2 at time 𝑡 + ℎ is denoted as

𝑝12 (𝑡, 𝑡 + ℎ; 𝑧) = P[𝑋 (𝑡 + ℎ) = 2|𝑋 (𝑡) = 1, 𝑍 (𝑡) = 𝑧]

and the probability of still being in state 1 at time 𝑡 + ℎ is denoted as

𝑝11 (𝑡, 𝑡 + ℎ; 𝑧) = P[𝑋 (𝑡 + ℎ) = 1|𝑋 (𝑡) = 1, 𝑍 (𝑡) = 𝑧] .

As explained before, we do not need to consider the possibility to move back to the
initial state, or to transition to an intermediate “recovery“ state for our applications.
Hence, transition probabilities 𝑝00 (𝑡, 𝑡 + ℎ) and 𝑝11 (𝑡, 𝑡 + ℎ; 𝑧) are in reality sojourn
probabilities, i.e.

𝑝00 (𝑡, 𝑡 + ℎ) = P[𝑋 (𝑡 + 𝑢) = 0 for all 0 < 𝑢 ≤ ℎ |𝑋 (𝑡) = 0]
𝑝11 (𝑡, 𝑡 + ℎ; 𝑧) = P[𝑋 (𝑡 + 𝑢) = 1 for all 0 < 𝑢 ≤ ℎ |𝑋 (𝑡) = 1, 𝑍 (𝑡) = 𝑧] .

More generally, transition probabilities can be rewritten as

𝑝𝑖 𝑗 (𝑡, 𝑡 + ℎ; 𝑧) = P[𝑋 (𝑡 + ℎ) = 𝑗 |𝑋 (𝑡) = 𝑖, 𝑍 (𝑡) = 𝑧] ∀𝑖, 𝑗 ∈ S
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and transition intensities can be rewritten as

𝛼𝑖 𝑗 (𝑡 ; 𝑧) = lim
ℎ→0

P[𝑋 (𝑡 + ℎ) = 𝑗 |𝑋 (𝑡) = 𝑖, 𝑍 (𝑡) = 𝑧]
ℎ

∀𝑖, 𝑗 ∈ S

= lim
ℎ→0

𝑝𝑖 𝑗 (𝑡, 𝑡 + ℎ; 𝑧)
ℎ

∀𝑖, 𝑗 ∈ S.

While these transition probabilities and transition intensities give useful information
on the evolution of the individuals, obtaining information about survival duration is
also of great interest for clinicians and patients. Life expectancy at birth is a metric
widely used in demography to measure the length of survival present in a population,
and corresponds to the average number of years an individual is expected to live from
birth (given that mortality rates remain constant in the future) (Chiang, 1984; Keyfitz
and Caswell, 2005; Preston et al., 2001). Moreover, remaining life expectancy is the
average number of remaining years an individual is expected to live, starting from
a certain age instead of birth. By computing remaining life expectancy starting at a
certain age, it is meant to be conditional on survival to that certain age. If, in addition
to estimate life expectancy from a given age instead of birth, it is also estimated up
to a given time horizon, it is known as the restricted mean lifetime and it can be
interpreted as the average number of years an individual is expected to live between
two specific ages. In this paper, we will be particularly interested in taking into
account both a starting age different than birth (so conditional on survival to some
ages after birth) and a finite time horizon (so considering a given upper age 𝜏). See
Section 4.4 for more details about the choices of the starting age and 𝜏 .

As mentioned earlier, the number of years of life lost can be seen either at the
cohort level (YLL𝑐 ) or at the individual level (YLL𝑖 ). When applied to cancer patients,
on the one hand, YLL𝑐 represents the total number of years of life lost by the cancer
cohort. This is useful to compare, for instance, the societal burden of cancer with other
diseases or between different countries. On the other hand, YLL𝑖 can be interpreted
as the average number of years of life lost that a cancer patient experiences from
the time of diagnosis in comparison to an healthy individual of the same age (and
possibly sex, year and other covariates such as ethnicity or socio-economic factors).
This latter definition resonates more in the patient-clinician communication. In this
paper, it is the YLL𝑖 which is chosen and illustrated.

YLL𝑖 in a certain time interval is the sum of life years lost due to (i) population
mortality (governed by mortality rates in that reference population) and due to (ii)
the cancer of interest. This quantity can be computed based on the estimated survival
observed in the general population minus the estimated survival in the cohort of
cancer patients considered. Formally, the number of years of life lost due to cancer
starting from the age at diagnosis 𝑇01 until age 𝜏 is defined as

𝑌𝐿𝐿𝑖 (𝑇01) =
∫ 𝜏

𝑇01

𝑆𝑃 (𝑡)d𝑡 −
∫ 𝜏

𝑇01

𝑆𝐶 (𝑠)d𝑠 (4.4)

where 𝑆𝑃 (·) denotes the classical survival function estimated via the population
mortality rates, and 𝑆𝐶 (·) is the cancer survival curve (in general, estimated via the
nonparametric Kaplan-Meier (1958) method but it could be estimated via another
method as well) (Belot et al., 2019).
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The lower bound 𝑇01 in the integrals represents age at diagnosis (so conditional
on survival to age𝑇01) and the upper bound 𝜏 corresponds to the time horizon, chosen
arbitrarily or such that it matches a certain cut-off. The number of years of life lost
uses the age at diagnosis for each cancer patient as its starting point and estimate
the expected remaining lifetime at that age using age-specific mortality rates. The
number of years of life lost due to cancer is then estimated by matching the expected
remaining lifetime for someone diagnosed with cancer with the life expectancy in
the general population at that specific age. Age-specific mortality rates and life
expectancy in the general population are generally available through life tables (as
they are usually stratified by age). For life tables that are stratified by sex in addition
to age, the number of years of life lost can be used to compare cancer patients to the
general population of the same sex and age.

Our objective is to demonstrate how this quantity can be estimated from our
MSM. The idea here is to start from our MSM to compute YLL𝑖 using life expectancy,
probabilities of developing the disease within a specific time period, and expected
lengths of stay in each of the different states (also referred in the literature as the
mean sojourn time, see Jackson (2007)). Following Eq. (4.4), estimation of YLL𝑖 via a
MSM starting from the age at diagnosis is denoted YLL𝑖

𝑀𝑆𝑀
(𝑇01) and corresponds to

the number of years of life lost at the time of diagnosis for someone diagnosed at age
𝑇01. Figure 4.2 illustrates the approach, where 𝑒 (𝑇02) is the remaining life expectancy
until the expected death of a healthy individual. One could argue that it does not
make sense to speak about age at diagnosis 𝑇01 if the person has no cancer. However,
in fact we compare what would have happened to a patient diagnosed at age 𝑇01 if
he/she would not have had a cancer at the time he/she was actually diagnosed. We
are now considering the hypothetical trajectory that a patient diagnosed at age 𝑇01
would have had if he/she had not had cancer and therefore if he/she had remained in
state 0.

Someone with cancer:

𝑇01

diagnosis

state 1 𝑇12

expected death

state 2

YLL𝑖

Same if he/she would have no cancer diagnosed:

𝑇01

diagnosis

state 0 𝑒 (𝑇02)

expected death

Figure 4.2: Representation of MSM to estimate YLL𝑖 from diagnosis

In the context of a Semi-Markov multi-state model, the remaining life expectancy for
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a cancer patient diagnosed at age 𝑇01, given the time 𝑧 elapsed since diagnosis is

𝑒𝜏11 (𝑇01 + 𝑧; 𝑧) =
∫ 𝜏

𝑇01+𝑧
𝑝11 (𝑇01 + 𝑧, 𝑠; 𝑧)d𝑠 . (4.5)

Since 𝑡 = 𝑇01 + 𝑧, Eq. (4.5) becomes

𝑒𝜏11 (𝑡 ; 𝑧) =
∫ 𝜏

𝑡

𝑝11 (𝑡, 𝑠; 𝑧)d𝑠 . (4.6)

Following Figure 4.2, to define YLL𝑖
𝑀𝑆𝑀

(𝑇01) in a Semi-Markov context we add the
conditioning on 𝑧 to have the number of YLL for someone diagnosed at age 𝑇01 but
that would have already survived with his/her cancer for 𝑧 years. In that case, we
obviously have to update the life expectancy for the cancer patient (the fact that
he/she lived already for 𝑧 years gives an information on his/her life expectancy) and
do the same for his “healthy” counterpart. This is denoted YLL𝑖

𝑀𝑆𝑀
(𝑇01; 𝑧) and is

defined as follows

𝑌𝐿𝐿𝑖𝑀𝑆𝑀 (𝑇01; 𝑧) = remaining life expectancy at age 𝑇01 for a healthy individual
− remaining life expectancy for a cancer patient diagnosed
at age 𝑇01, given the time 𝑧 elapsed since diagnosis

= 𝑒 (𝑇01) − 𝑒𝜏11 (𝑇01 + 𝑧; 𝑧)
(4.7)

Remaining life expectancy at age𝑇01 for a healthy individual is usually found with life
tables and population mortality rates. Here, the expected remaining lifetime until age
𝜏 for someone diagnosed with cancer is matched with the 𝜏-restricted life expectancy
in the general population at that specific age.

As often the case in practice, transition intensities are assumed to be piecewise
constant in order to ease calculations but also given the information available in
cancer registries. In that case, transition intensities are easily estimated by the ratio of
the observed number of transitions (diagnosis or death) to the corresponding exposure
(in the state to be left) (Soetewey et al., 2022). When (annual) piecewise constant
transition intensities are considered, we get

𝑒𝜏11 (𝑡 ; 𝑧) =
𝜏−𝑡−1∑︁
𝑘=0

exp

(
−
𝑘−1∑︁
𝑙=0

𝛼12 (𝑡 + 𝑙 ; 𝑧 + 𝑙)
)
1 − exp(−𝛼12 (𝑡 + 𝑘 ; 𝑧 + 𝑘))

𝛼12 (𝑡 + 𝑘 ; 𝑧 + 𝑘)
(4.8)

with
∑𝑘−1
𝑙=0 𝛼12 (𝑡 + 𝑙 ; 𝑧 + 𝑙) = 0 if 𝑙 = 0. The development of 𝑒𝜏11 (𝑡 ; 𝑧) is explained in

Appendix A.1.
Remember that 𝑌𝐿𝐿𝑖

𝑀𝑆𝑀
(𝑇01; 𝑧) is defined at an individual level. In this sense,

𝑌𝐿𝐿𝑖
𝑀𝑆𝑀

(𝑇01; 𝑧) quantifies the number of years of life a patient diagnosed with cancer
𝑧 years ago is expected to lose compared to someone who will never develop the
disease. It can be seen as an insightful health indicator, complementary to other
health indicators already used by clinicians and policy-makers. Indeed, it can be used
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to communicate about a patient’s survival, but it can also serve as a measure of the
burden of cancer for the whole society (with comparisons between diseases, countries
or throughout the years for example).

4.4 Derived health indices - case of three specific cancer types

One of the main advantages of estimating YLL𝑖 from a MSM is that several health
indicators could be derived from it. The focus here is put on two different applications
to illustrate its potential uses; (i) the cancer incidence risk and (ii) the number of years
of life lost due to cancer given a certain time spent after diagnosis. Note that the first
health indicator requires the 3 states. However, regarding the second one, we consider
an individual of age𝑇01 at diagnosis. This means that state 0 is no longer needed, since
we are already in state 1. Also note that incidence refers to the number of new cases
of a disease over a specified period, and can be expressed as a risk or an incidence
rate (Noordzij et al., 2010). We are interested in the former, that is, the incidence
risk that a subject within a population will develop a given cancer, over a specified
follow-up period. This incidence risk, expressed as a probability, can be interpreted as
an estimation of the risk of cancer in an individual subject over a certain time frame.

For these applications, our analyses are limited to patients aged 20 to 69 years
old at time of diagnosis for two main reasons. First, childhood cancers can be seen
as a category of cancer on their own and are often studied separately because they
differ greatly from adult cancers. Second, 𝜏 has been set to 70 years, an age in which
persons were censored if they had not died before to focus on active life from a public
policy perspective. The estimate of YLL𝑖 has therefore to be interpreted as the number
of years of life lost before that specific age. This is analogous to the 𝜏-restricted mean
lifetime, which can be interpreted as the average number of years lived before time 𝜏 .
Note that the choice of 𝜏 is arbitrary. In some settings, researchers may be interested
in YLL𝑖 before retirement’s age applicable in a country. In our case, we are interested
in potential implications for insurers in the context of the right to be forgotten, hence
the upper limit of 70 years (people aged above are unlikely to contract a loan). Note
the distinction between the maximum age at diagnosis (69 years) and the upper age
limit 𝜏 (70 years). This difference is explained by the fact that we include patients
who have been diagnosed before their 70𝑡ℎ birthday (and thus who are still 69 years
old at the time of diagnosis), while we are interested in the number of years of life
lost before the age of 70 due to cancer. This is to avoid the possibility that a patient is
diagnosed between his or her 70𝑡ℎ and 71𝑡ℎ birthday, while computing the number of
years of life lost before he or she has reached the age of 70 years.

To display our results, the time since diagnosis 𝑧 is set to 0, 5 and 10 years.
𝑌𝐿𝐿𝑖 (𝑇01; 0) corresponds to the number of years of life lost due to cancer at the
time of diagnosis for a patient diagnosed at age 𝑇01. 𝑌𝐿𝐿𝑖 (𝑇01; 5) and 𝑌𝐿𝐿𝑖 (𝑇01; 10)
correspond to the same quantity computed after having survived to the cancer for
respectively 5 and 10 years. A 𝑧 of 5 and 10 years after diagnosis has been chosen to
cover a relatively large period of time after diagnosis, while we refrain from setting it
higher due to the limited follow-up period in our data.
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Figure 4.3: Probabilities of being diagnosed with breast, melanoma and thyroid cancer over
the next 𝑛 = 20 years for a healthy individual as function of age 𝑡 ∈ {20, 21, . . . , 40}

4.4.1 Incidence risk

We start the applications with the estimation of the probability for the population
of age 𝑡 to be diagnosed with of each the three types of cancer we consider between
age 𝑡 and 𝑡 + 𝑛. In other words, the probability of being diagnosed with cancer for a
healthy individual aged 𝑡 over the next 𝑛 years is computed. This measure, similar to
the incidence risk and again assuming yearly-constant intensities, is defined based on
a MSM as follows

𝑝01 (𝑡, 𝑡 + 𝑛) =
𝑛−1∑︁
𝑘=0

𝛼01 (𝑡 + 𝑘) exp
(
−
𝑘−1∑︁
𝑙=0

𝛼0• (𝑡 + 𝑙)
)
1 − exp

(
− 𝛼0• (𝑡 + 𝑘)

)
𝛼0• (𝑡 + 𝑘)

(4.9)

with
∑𝑘−1
𝑙=0 𝛼0• (𝑡 + 𝑙) = 0 if 𝑙 = 0.

The probabilities of being diagnosed with breast, melanoma and thyroid cancer
over the next 20 years for a healthy individual obtained via the Semi-Markov 3-state
model are displayed in Figure 4.3, for ages 𝑡 ∈ {20, 21, . . . , 40} and for each sex
separately. Figure 4.3 shows that incidence risk over a 20-year period remains rather
low (< 0.71%) for melanoma and thyroid cancers for both sexes, but considerably
increases with age for female breast cancer (culminating at 5.12% at age 40).
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4.4.2 Years of life lost from diagnosis

Results of 𝑌𝐿𝐿𝑖
𝑀𝑆𝑀

(𝑇01; 𝑧) as functions of age at diagnosis (𝑇01 ∈ {20, 21, . . . , 69}) and
for 𝑧 = 0, 5 and 10 years after diagnosis are presented by sex and cancer site in Figure
4.4. We can see that, for both sexes and all three cancers of interest, the longer the
time survived after diagnosis (i.e., the greater the 𝑧), the lower 𝑌𝐿𝐿𝑖

𝑀𝑆𝑀
(𝑇01; 𝑧) (with

an exception for women diagnosed with thyroid cancer at the age of 25 and below).
For female breast cancer, 𝑌𝐿𝐿𝑖

𝑀𝑆𝑀
(𝑇01; 𝑧) is highest when diagnosed at the age of 20

and then decreases with age at diagnosis, whereas for melanoma and thyroid cancers,
it peaks when diagnosed at later ages (between 35 and 55 years depending on the
cancer and sex). For both melanoma and thyroid cancers, 𝑌𝐿𝐿𝑖

𝑀𝑆𝑀
(𝑇01; 𝑧) is larger

for men than for women. Botta et al. (2019) who describe the impact of cancer during
patients’ entire lives found a similar pattern between women and men. Comparisons
between sexes cannot be made for breast cancer as only female breast cancer is
included. Among men, 𝑌𝐿𝐿𝑖

𝑀𝑆𝑀
(𝑇01; 𝑧) is globally lower for thyroid cancer than for

melanoma cancer. Among women, 𝑌𝐿𝐿𝑖
𝑀𝑆𝑀

(𝑇01; 𝑧) is lowest for thyroid cancer and
highest for breast cancer. Note also that, for patients diagnosed with melanoma or
thyroid cancer at all considered ages, 𝑌𝐿𝐿𝑖

𝑀𝑆𝑀
(𝑇01; 10) remains below one year. This

indicates that, once they have survived their cancer for 10 years, they lose (compared
to the general population and up to the age of 70 years) a limited number of years of
life due to cancer.

Remember that 𝑌𝐿𝐿𝑖
𝑀𝑆𝑀

(𝑇01; 𝑧) is computed at the individual level with 𝜏 = 70
years, so these figures give the number of years of life a patient diagnosed with
cancer is expected to lose due to the disease before the age of 70 years (at the time of
diagnosis, 5 and 10 years after diagnosis). This health indicator can, however, also
be analyzed in relative terms, that is, in comparison with other cancers, diseases or
conditions rather than in absolute terms. Indeed, knowing that a group of patients
has more to lose (up to a certain age) in terms of years of life due to a specific disease
compared to another one is more meaningful for policy-makers and clinicians. This
comparison would allow, for example, to rank diseases in terms of burden to the
society, that is, highlight those which are, until a chosen age, the most lethal and the
ones which are the most harmless.

It is also worth noting that curves displayed in Figure 4.4 would be different if
another age was chosen for 𝜏 . Indeed, the higher the upper age limit 𝜏 , the more years
of life an individual can lose. The decreasing trend of 𝑌𝐿𝐿𝑖

𝑀𝑆𝑀
(𝑇01; 𝑧) at older ages

can be explained partly by the fact that the survival of a cancer patient is approaching
that of the general population, and partly by the fact that a cancer patient has,
comparatively to the general population, simply less years of life to lose before the
age of 70 years as he or she approaches that age. Unfortunately, it is not possible to
distinguish between these two reasons without explicitly calculating the number of
years of life lost with a much higher age limit. However, this higher limit was not
applied in our calculations, as we are determining the number of years of life lost
within the context of mortgage insurance (which we recall, is an insurance product
mainly taken out by young adults).
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Figure 4.4: Number of life years lost at the individual level before the age of 70 years due to
cancer, estimated from 𝑧 = 0, 5 and 10 years after diagnosis, as a function of age at diagnosis
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4.5 Discussion

As it has been highlighted on several occasions in the literature, there are several
approaches and methods to estimate the number of years of life lost due to cancer
(Andersen, 2017). Sometimes, it even has different definitions andmeanings depending
on the context and the audience (Belot et al., 2019). It is therefore hard to compare
YLL𝑖 due to cancer across different studies, in particular when the upper age limit
𝜏 is different. In the present study, it is set to 70 years to focus on young adults and
active life, while most studies set it at a higher age to consider the number of years of
life lost during the entire lifetime (Gardner and Sanborn, 1990; Centers for Disease
Control and Prevention, 1993). As mentioned above, the number of years of life lost
before a given time horizon (70 years in our illustration) obviously depends on how
far is this time horizon. Therefore, it is important to note that results found for the
number of years of life lost from diagnosis until age 70 should not be taken as an
evaluation of the risk from a medical or biological point of view. Such an information
could however still be very useful in a situation where this time horizon would be
meaningful, as could for example be the case from an actuarial or economical point
of view. Indeed, in the context of the right to be forgotten for instance, the insurer is
mainly interested in the survival until the end of the loan contracted. More generally,
from a public policy perspective, one may be interested in the number of years of life
lost before the age of retirement.

Although it is hard to compare results with existing literature, our results could
be considered as in line with Silversmit et al. (2017b), who, also using Belgian data,
found a YLL𝑖 of 3.2 years for female breast cancer, 2.5 and 3.6 years for female and
male melanoma cancer, and 1.5 and 2.5 years for female and male thyroid cancer,
respectively. These results are obtained with as reference age the life expectancy from
general population at age of diagnosis, which is mostly larger than 78 years. The
interested reader is referred to Andersen et al. (2013); Andersen and Pohar Perme
(2008); Andersson et al. (2013); Aragon et al. (2008); Baade et al. (2015); Belot et al.
(2019); Botta et al. (2019) and Capocaccia et al. (2015) for more methodologies and
results in the context of cancer.

There is a vast literature on YLL and MSM in biostatistical and medical studies.
The present paper illustrates their relevance for computing a measure of the number
of years of life lost before a given age, chosen depending on the situation or the
research question. Arık et al. (2023) have shown the implementation of years of life
lost in the context of a multi-state model. However, it differs from the present study
on several points: (i) it uses a Markov model (so transition intensities do not depend
on the duration of stay in the current state), (ii) it is targeted to another age group
as it uses data on women diagnosed with breast cancer aged 65–89 years, and (iii) it
focuses on the number of years of life lost by the entire cohort. The present paper
aims at filling this gap. Some useful applications of MSM-based calculation to derive
health indices such as disease incidence risk and number of years of life lost due to
cancer targeted to this public have been illustrated.

Most studies refer to the number of years of life lost or remaining life expectancy
starting from the date of diagnosis as an estimate of the disease burden (Andersson
et al., 2015, 2013; Baade et al., 2015, 2016; Licher et al., 2019; Syriopoulou et al., 2017).
This is undoubtedly useful when considering patients who have just been diagnosed,
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the time at which a patient is most likely to be concerned about his/her survival.
Nonetheless, its relevance should not be limited to quantifying the loss of survival at
the time of diagnosis. For long-term survivors, it becomes even more pertinent when
considering its evolution over time (Botta et al., 2019; Capocaccia et al., 2015). Indeed,
there are many applications where one would be interested in the loss of survival due
to cancer, given that the patient already survived some years after diagnosis. This is
particularly useful for cancers where the amount of time survived since diagnosis has
an influence on the patient’s survival. This is actually the underlying basis behind
the right to be forgotten (Mesnil, 2018; Scocca and Meunier, 2020; Soetewey et al.,
2021). Implemented since 2016 in France and since 2019 in Belgium, it states that no
difference can be made, in terms of access to an insurance product and the level of its
premiums, between a healthy client and a cancer patient if he/she survived at most
10 years after the end of the therapeutic protocol. YLL𝑖 over time since diagnosis can
be interpreted as a measure of how close from being cured long-term survivors can
be considered (Botta et al., 2019). A decreasing YLL𝑖 over time since diagnosis shows
some evidences that patients who are still alive are approaching the same mortality
risks as of the general population. In this context, Capocaccia et al. (2015) proposed a
cut-off of less than two years of life lost for colon cancer patients to be considered as
statistically cured.

It is important to note that there has been improvements in treatment of advanced
melanoma over the last decade, leading to a positive impact on quality of life and
overall patient survival (Pasquali et al., 2018; Pedersen et al., 2023; Tichanek et al.,
2023; Tromme et al., 2016). Obviously, the bigger the improvements in treatment
and overall survival, the more the duration in the ill state is underestimated and the
more the number of years of life lost is overestimated. This does not, nonetheless,
undermine our analyses for multiple reasons. First, a better prognosis has no impact
on the incidence nor on the incidence risk (i.e., the first application of the present
study). Second, the largest improvements in treatment and overall survival concern
advanced melanoma, so stages III and IV. These two advanced stages represent a
limited share of all tumours considered here (8.96% and 4.16% for stages III and IV,
respectively). Third, improvements in treatment are quite recent, limiting the impact
on the obtained results. Fourth, in the context of the right to be forgotten and from
an insurer’s point of view, it is more conservative if the number of years of life lost
due to cancer before a certain age is overestimated than if it was underestimated.

Melanoma, thyroid and female breast cancers may include a variety of cancer
sub-types and could be diagnosed at different stages of severity, leading to differences
in terms of survival. It is thus undeniable that including the information on stages of
severity would refine the analysis. This could be achieved, for instance, by stratifying
the analyses by cancer stage. However, it has been omitted on purpose for the sake of
illustration of the proposed approach.

Cancer is not one disease but a family of many diverse diseases with different
outcomes. Results in the present paper focus on melanoma, thyroid and female breast
cancer patients, and cannot, at this stage, be transferred to other cancer types. A
natural extension of this work would be to repeat the analyses for all major cancer
types. Arık et al. (2020) even showed, in a comprehensive study using UK data, that
for female breast cancer there are regional differences in terms of cancer morbidity.
Thus, the analysis could also be refined to a regional level instead of national level.
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This is not done in the present paper as it goes beyond the scope of this study which
primarily aims to advocate a new method to estimate the number of years of life lost.

Cancer patient survival has improved over the last few decades, with an increasing
proportion of patients being cured for many types of cancer (Andersson et al., 2011;
Lambert et al., 2006; Silversmit et al., 2017a). Given the increasing numbers of people
being diagnosed with cancer, informing patients and involved parties with relevant
risk information is crucial (Baade et al., 2015). Providing precise and informative
estimate of the reduction in the remaining life expectancy in case cancer is diagnosed
or to long-term cancer survivors is therefore of prime importance, for patients, policy-
makers and society as a whole. From the literature, it is clear that the number of years
of life lost is an important addition to existing measures that give a complete picture of
the impact of a cancer diagnosis. The methods proposed in this paper help to estimate
this important health indicator from a multi-state model’s perspective. This will
undoubtedly help to assess when the excess mortality from cancer becomes negligible
in cancer survivors, in turn allowing the right to be forgotten to be developed further.

In this study, the assumption is made that a cancer patient cannot become healthy
again (i.e., transition from the ill to the healthy state is not possible). Although this
assumption is believed to be reasonable for most cancers, one may argue that it does
not always hold. However, in our context, the real transition of interest is more from
ill to dead than from ill to healthy, following the reasonable paradigm that staying
long enough in the ill state to die from something else is, at least from a statistical
point of view, equivalent to be cured (cfr. the idea of “statistical cure” for example
in Tralongo et al. (2017), Boussari et al. (2018) and Jakobsen et al. (2020)). Also, the
main objective of this study is to illustrate how the concept of MSM can be applied to
estimate another well-known quantity in medicine and epidemiology, which has not
yet been done so far. Using more advanced MSM to estimate the number of years of
life lost is undoubtedly an interesting question, but left for future research.

For cancer patients, quality of life may be considered as important as the length
of life itself (Shrestha et al., 2019). The number of years of life lost gives an easily
interpretable measure about survival of cancer patients. However, other indicators
such as, among others, the disability-adjusted life years (DALY) should also be con-
sidered, in particular for diseases or conditions that cause significant disability or
do not result in death. Another metrics which could be estimated via the proposed
methods is the cancer-free life expectancy. This could be estimated (i) via the mean
sojourn time in the healthy state, or (ii) by subtracting, from the life expectancy in
the general population, the number of years of life lost due to cancer up to the age
corresponding to the life expectancy in the general population. Note that even though
it is the number of years of life lost due to cancer that is estimated, the methods
proposed in this paper is not limited to cancer and could be applied to several other
diseases or conditions (diabetes and HIV, amongst others).

4.6 Additional notes

As mentioned earlier, there has been a proliferation of research on the topic of the
number of years of life lost, in several countries and for several conditions or diseases.
Findings from other studies cannot be compared to each others, nor to our results due
to the fact that time horizons are different. Nonetheless, for the sake of completeness
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and for the interested reader, we highlight the main findings related to cancer research.
Andersen et al. (2013) found a YLL𝑖 due to cancer (all types of cancer) ranging

from 0.11 to 3.68 years for Danish males and from 0.21 to 1.62 years for Russian males,
depending on the age at diagnosis and the method used. Also using Belgian data,
Silversmit et al. (2017b) found a YLL𝑖 of 3.2 years for female breast cancer, 2.5 and 3.6
years for female and male melanoma cancer, and 1.5 and 2.5 years for female and male
thyroid cancer. These results are obtained with as reference age the life expectancy
from general population at age of diagnosis, which is mostly larger than 78 years.
Baade et al. (2015) found a YLL𝑖 due to, respectively, melanoma and female breast
cancer ranging from 3 years (at 40 years old) to 1 year (at 80 years old) and from 12.1
years (at 40 years old) to 1.6 years (at 80 years old). Capocaccia et al. (2015) obtained
a YLL𝑖 due to female breast cancer ranging from 8.7 years at age 40–44 to 2.4 years at
ages 70–74. For patients diagnosed at age 45 years, Botta et al. (2019) found a YLL𝑖
below 6 years for thyroid cancer in women and melanoma in men. Andersson et al.
(2013) arrived at a YLL𝑖 for female breast cancer ranging from 13 years (50-59 age
group) to 2.2 years (80+ age group) and from 9.13 years (50-59 age group) to 1.84 years
(80+ age group) for melanoma cancer. Finally, Belot et al. (2019) found a YLL𝑖 due to
colon cancer over a 10-year time window ranging from 4.14 to 4.77 years depending
on the socioeconomic group.

As mentioned in Section 2.7, insurers have a keen interest in assessing the confi-
dence level of the point estimates calculated. If the distributions of 𝑌𝐿𝐿𝑖

𝑀𝑆𝑀
(𝑇01; 𝑧)

were known, confidence intervals could easily be computed. However,𝑌𝐿𝐿𝑖
𝑀𝑆𝑀

(𝑇01; 𝑧)
does not follow a specific distribution. An alternative approach involves employing
the bootstrap method to estimate confidence intervals. Nonetheless, this method re-
quires multiple observations. In the context of this study, there exists only a singular
𝑌𝐿𝐿𝑖

𝑀𝑆𝑀
(𝑇01; 𝑧) observation per age, sex, cancer type, and 𝑧 combination. Conse-

quently, the application of the bootstrap method is hindered. 95% confidence bands
displayed in Figure 4.5 are thus obtained after fitting a smoothing function of the type
local polynomial regression (also known as Locally Estimated Scatterplot Smoothing,
and abbreviated as LOESS) to the estimations of the number of years of life lost. The
method, known for its flexibility in capturing non-linear relationships, was employed
with a span parameter of 0.75, which controls the degree of smoothing (Cleveland
et al., 2017).

While definitely not flawless, this approach helps to better illustrate the uncer-
tainty associated with the estimated quantities. Providing a range for the number
of years of life lost is essential for assessing uncertainty and selecting a reasonable
value within this range. By incorporating these intervals, we enhance the analysis’s
robustness and provide a clearer understanding of the variability around our esti-
mates, increasing confidence in our conclusions. In line with the confidence intervals
proposed in Sections 2.7 and 3.5, a similar approach should work for the YLL, where
the worst-case scenario would correspond to increased rates for the transition “state
0 to state 1” and “state 1 to state 2.” Inclusion of the 95% confidence intervals for the
incidence risk, as well as finding other methods to assess uncertainty, are left for
future research.
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Figure 4.5: Adaptation of Figure 4.4 to include 95% confidence intervals
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Right to be forgotten for
mortgage insurance issued
to cancer survivors:
Critical assessment and
new proposal

5

This chapter is founded on an article carrying the same name as the chapter and sub-
mitted jointly with Pr. Catherine Legrand, Pr. Michel Denuit and Dr. Geert Silversmit
in the European Actuarial Journal in 2023.

Like Chapters 2 and 3, the present chapter is targeted to an actuarial audience.
Therefore, notations introduced in these two chapters are repeated as closely as pos-
sible in this chapter.

Abstract
Soetewey et al. (2021) proposed to determine the waiting period opening the right
to be forgotten (RTBF) as the time after diagnosis needed for the premium to revert
back to some acceptable level expressed by means of regulatory life tables. However,
this approach requires data up to 30 years after diagnosis (10 years of standard RTBF
plus the typical duration of the loan), or extrapolating the results up to that time
horizon. When survival statistics are only available over a shorter duration, it turns
out that the results may strongly depend on the extrapolation method. This is why an
alternative method is proposed here, based on a constraint imposed to the premium.
This constraint is then transposed into a target on the conditional observed survival
and the waiting period follows. For the sake of robustness, results obtained with the
proposed approach are compared to results obtained with Kaplan-Meier estimate
taken as a nonparametric reference. Furthermore, the paper investigates the impact
of the stage of the tumor at diagnosis on waiting periods.

Keywords: Term insurance, impaired lives, waiting period, home loan, cancer stage at
diagnosis.
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5.1 Introduction and motivation

Outstanding balance insurance is generally required by lenders to secure their loans.
The borrower is the insured life: if he or she dies before the loan has been fully repaid
then the insurer pays a death benefit corresponding to the balance of the loan. As
with any other term life insurance product, applicants with poor health conditions
may be denied insurance or charged increased amounts of premium compared to
standard conditions. In extreme cases, this may prevent them from accessing property
or develop their business project. For this reason, several EU countries passed laws to
ease access to mortgage insurance for long-term disease survivors.

The first initiative dates back to 2007, when France launched the AERAS Con-
vention (AERAS is the acronym for “s’Assurer et Emprunter avec un Risque Aggravé
de Santé” in French, which could be translated as “insuring and borrowing with an
aggravated health risk”). This agreement, signed by the public authorities, banking
and insurance sectors, and patients’ and consumers’ associations purposed to allow
people cured from cancer or suffering certain chronic diseases to access insurance
comprising benefits in case of death or disability, as well as to guaranteed income
insurance. Considering long-term cancer survivors, the AERAS Convention included
a “right to be forgotten“ (henceforth abbreviated as RTBF), that is, the right for an
insurance applicant not to declare a previous cancer after a period of 10 years starting
at the end of the therapeutic protocol (reduced to 5 years for pediatric cancers). These
periods of 10 and 5 years start from the date of the end of the therapeutic treatment,
in absence of relapse within this period.

In Belgium, it was only in 2019 that the RTBF entered the insurance law. Based to
a large extent on the reference tables published in the AERAS Convention, a Royal
Decree dated May 26, 2019 lists certain types of cancer for which, depending upon
entry criteria (such as cancer stage or age), the standard waiting period of 10 years
from the end of active treatment is reduced. The RTBF has recently been adapted
in Belgium, again following similar changes in France. As from November 2022, the
standard waiting period opening the RTBF has been shortened from 10 years to 8
years, and it has been adopted that it will be reduced to 5 years as from January 2025.
Moreover, also as from November 2022, the period is shortened to 5 years for cancer
survivors who have been cured before the age of 21.

The RTBF has now also been installed through an agreement in Luxembourg, and
through a legal framework in The Netherlands, Portugal, Romania, and more recently
in Italy, Spain and Cyprus. It is being debated and advocated for at the European level
to expand to the other EU countries as well. There are some ongoing discussions
between Insurance Europe, the European Commission and the European Parliament
on a possible EU-wide RTBF for cancer survivors. See for instance Scocca and Meunier
(2020, 2022).

This paper aims to contribute to this evolution by proposing an actuarially sound
methodology to evaluate a technically correct waiting period opening the RTBF. It
starts with a critical assessment of the approaches proposed by Soetewey et al. (2021)
and by Van Ginckel et al. (2022). It turns out that the results obtained from the method
proposed by Soetewey et al. (2021) strongly depend on the extrapolation method. This
is precisely shown in this paper, by modifying the extrapolation method and ending
up with different waiting periods for some cancer types. This is clearly not acceptable
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in the context of the RTBF. To be precise, the problem is not with the method proposed
by Soetewey et al. (2021) but comes from the limited follow-up period for patients
in some cancer registries, including the Belgian one. This requires extrapolation to
longer times since diagnosis and this step may induce higher uncertainty. If the length
of the follow-up is enough, the method proposed by Soetewey et al. (2021) remains
actuarially sound.

We also consider the approach proposed by Van Ginckel et al. (2022), which applies
a biostatistical approach based on an arbitrary cut-off of 0.99 for the conditional net
survival to propose reduced waiting periods for breast cancer. In Section 5.4.2, we
show that, despite the apparent closeness to general population mortality in terms of
survival, their method results in one-year death probabilities up to 10 times higher
compared to general population at young adult ages. It is clear that such excess
mortality cannot be absorbed by mortgage insurance market without increasing
premiums at standard conditions.

There is thus a need for another approach, escaping the problem faced with extrap-
olation in case of limited follow-up and controlling the resulting premium compared
to some market reference. In this paper, we impose a constraint to the premium
and transpose it into a target on the conditional observed survival probabilities. The
main assumption retained throughout this paper is that mortality for cancer patients
temporarily peaks after diagnosis before reverting back to a level comparable to the
general population for survivors. We will demonstrate in this paper how the length
of the waiting period opening the RTBF can be derived from the comparison of the
conditional one-year survival probabilities of cancer patients with the corresponding
probabilities at general population level. The main advantage is that the time from
which the RTBF can be exercised can be estimated from the available data only, with-
out the need to extrapolate mortality rates beyond 10 years. While cancer stage at
diagnosis has not been taken into account in Soetewey et al. (2021), the present paper
studies how the length of the waiting period opening the RTBF varies according to
the extent of the tumor at diagnosis.

The remainder of this paper is structured as follows. Section 5.2 describes the
mortgage insurance product considered in this paper. Section 5.3 presents the data
used to perform the present study. Section 5.4 critically assesses the methods proposed
by Soetewey et al. (2021) and by Van Ginckel et al. (2022). It is shown that the chosen
extrapolation method for limited follow-up impacts on the length of the resulting
waiting period opening the RTBF. Our alternative approach is detailed in Section
5.5, and results obtained with our approach are compared with results obtained via
a method based on the Kaplan-Meier nonparametric estimator to demonstrate that
the proposed approach is trustworthy. Waiting periods are then derived from the
comparison between cancer patients’ conditional one-year survival probabilities and
conditional one-year survival probabilities of the general population. In Section 5.6,
we illustrate these analyses considering Belgian data onmelanoma, thyroid and female
breast cancers according to the stage of tumor at diagnosis. The final Section 5.7
concludes the paper with a discussion.
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5.2 Mortage insurance

The proposed approach is based on a representative mortgage insurance contract for
the market under consideration. In this paper, we work with a simplified example
which could be an appropriate starting point. Precisely, we consider a mortgage
insurance applicant aged 𝑥 borrowing an amount of capital 𝜅 at annual interest rate 𝑟
for a duration 𝑛. The capital is reimbursed by constant yearly installments over the 𝑛
years. The borrower pays the amount

𝜅

𝑎𝑛 |
, where 𝑎𝑛 | =

𝑛∑︁
𝑘=1

1
(1 + 𝑟 )𝑘

,

back to the lender. Working with annual repayments compared to monthly ones is
conservative from the insurer’s point of view.

At time 𝑠 , the amount of the loan that has not yet been amortized is denoted as 𝑐𝑠 .
Let ⌊𝑠⌋ denotes the integer part of 𝑠 ∈ [0, 𝑛], that is, the largest integer smaller than,
or equal to 𝑠 . At time 𝑠 , 0 < 𝑠 ≤ 𝑛, the present value of future payments is

𝑐𝑠 = 𝑐 ⌊𝑠 ⌋ (1 + 𝑟 )𝑠−⌊𝑠 ⌋

where 𝑐 ⌊𝑠 ⌋ is the outstanding balance of the loan at time ⌊𝑠⌋, right after the yearly
installment has been paid, given by

𝑐 ⌊𝑠 ⌋ = 𝜅
𝑎
𝑛−⌊𝑠 ⌋ |
𝑎𝑛 |

.

The loan is secured by a mortgage insurance, repaying the lender the amount 𝑐𝑠 in
case the policyholder dies at time 𝑠 , 0 < 𝑠 ≤ 𝑛. The net single premium is the expected
present value (henceforth abbreviated as EPV) of insurance benefits, that is,

𝜋0 =

∫ 𝑛

0
𝑠𝑝𝑥𝜇𝑥+𝑠𝑐𝑠 (1 + 𝑖)−𝑠d𝑠

where 𝑖 is the technical interest rate for the insurance contract, 𝑠𝑝𝑥 is the 𝑠-year
survival probability for a policyholder aged 𝑥 at policy issue and 𝜇𝑥+𝑠 is the hazard,
or force of mortality, at attained age 𝑥 + 𝑠 . Note that hazard and force of mortality are
the same. For consistency, from now on, hazard will always be used in this paper. In
accordance with actuarial notation, we denote as 𝑝𝑦 the one-year survival probability
at integer age 𝑦 (that is, the probability of being alive at age 𝑦 + 1 given that the
individual is alive at age 𝑦). Note that 𝑦 is introduced to differentiate from 𝑥 which
refers to the age at policy issue. In this sense, although both are equal in terms of
value, 𝑦 refers to a generic age while 𝑥 refers to the specific age at policy issue.

Premium calculation is often based on regulatory or experience life tables. In
this paper, we consider that standard conditions correspond to premiums computed
according to the Belgian regulatory life table XK applying to insurance products
comprising benefits in case of death (formally, XK defines minimum premium amount
for policies with a positive sum at risk). This life table is widely adopted by Belgian
insurers. It is known to be conservative and to generate a relatively high safety
loading. Insurers are also allowed to use experience life tables available from the
website of the National Bank of Belgium (NBB). These life tables reflect the mortality
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observed on the market, within portfolios of companies controlled by NBB. There is
no safety loading and insurers are only allowed to apply premium rates resulting from
NBB tables for relatively short periods of time (5 years, and then rates are subject
to revision in case the observed mortality on the market changes over time). In this
paper, we only consider the XK life table for premium calculation since these tables
can be guaranteed for the whole contract duration and their conservatism better
reflects increased mortality levels due to the disease.

The XK life table published in a Royal Decree does not distinguish between male
and female policyholders, in accordance with EU anti-discrimination directive. For
this reason, the entire analysis is conducted in this paper by pooling male and female
mortality data. Also, it only gives one-year survival probabilities 𝑝𝑦 at integer ages 𝑦.
In this paper, we work under piecewise constant hazard, assuming that

𝜇𝑦+𝑠 = 𝜇𝑦 = − ln𝑝𝑦 for all 0 ≤ 𝑠 < 1 and integer 𝑦.

Let us compute 𝜋0 under this assumption. To this end, we split the integral to get

𝜋0 =

𝑛−1∑︁
𝑘=0

∫ 𝑘+1

𝑘
𝑠𝑝𝑥𝜇𝑥+𝑠𝑐𝑠 (1 + 𝑖)−𝑠d𝑠

=

𝑛−1∑︁
𝑘=0

𝑘𝑝𝑥

∫ 1

0
𝑠𝑝𝑥+𝑘𝜇𝑥+𝑘+𝑠𝑐𝑘 (1 + 𝑟 )𝑠 (1 + 𝑖)−𝑘−𝑠d𝑠

=

𝑛−1∑︁
𝑘=0

𝑘𝑝𝑥 (1 + 𝑖)−𝑘𝑐𝑘𝜇𝑥+𝑘
∫ 1

0
𝑠𝑝𝑥+𝑘 (1 + 𝑟 )𝑠 (1 + 𝑖)−𝑠d𝑠 .

Now,

∫ 1

0
𝑠𝑝𝑥+𝑘 (1 + 𝑟 )𝑠 (1 + 𝑖)−𝑠d𝑠 =

∫ 1

0
exp

(
− 𝑠

(
𝜇𝑥+𝑘 − ln(1 + 𝑟 ) + ln(1 + 𝑖)

) )
d𝑠

=
1 − exp

(
− 𝜇𝑥+𝑘

) 1+𝑟
1+𝑖

𝜇𝑥+𝑘 − ln(1 + 𝑟 ) + ln(1 + 𝑖) ,

so that we finally get

𝜋0 =

𝑛−1∑︁
𝑘=0

𝑘𝑝𝑥 (1 + 𝑖)−𝑘𝑐𝑘𝜇𝑥+𝑘
1 − exp

(
− 𝜇𝑥+𝑘

) 1+𝑟
1+𝑖

𝜇𝑥+𝑘 − ln(1 + 𝑟 ) + ln(1 + 𝑖) (5.1)

where 0𝑝𝑥 = 1 and for 𝑘 ≥ 1,

𝑘𝑝𝑥 =

𝑘−1∏
𝑗=0

𝑝𝑥+𝑗 = exp

(
−
𝑘−1∑︁
𝑗=0

𝜇𝑥+𝑗

)
.

5.3 Data

The data available from the Belgian Cancer Registry (BCR) are considered in this
paper. The BCR is a national population-based cancer registry collecting data on
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all new cancer cases diagnosed in Belgium since the incidence year 2004. Cancer
registration has been made compulsory by law since 2006 in Belgium. The vital status
is derived from linkage with the Belgian Crossroads Bank for Social Security up to
April 11, 2022 and quality controls are performed regularly by BCR, ensuring the
continuity and completeness of cancer registration in the country. More information
can be found on the BCR website, at www.kankerregister.org.

To illustrate our work, three cancer types are considered: melanoma (ICD-10 C43),
thyroid (ICD-10 C73) and female breast (ICD-10 C50) cancer (only female breast cancer
is considered as there are too few registrations for male breast cancer). These three
cancer sites have been selected to evaluate the proposed method in different scenarios.
Melanoma and thyroid cancer patients are known to have a limited excess hazard
compared to the general population (Soetewey et al., 2021). The situation for female
breast cancer patients is different with usually a high yearly survival probability in
the first years after the date of diagnosis before it eventually decreases due to late
cancer recurrences. Moreover, it is known that mortality for patients diagnosed with
any of these three cancer types varies with time since diagnosis (Soetewey et al.,
2022), yielding appropriate illustrations of the right to be forgotten.

For these applications, our analyses are also limited to patients aged 20 to 69 at
time of diagnosis for two main reasons. First, childhood cancers can be seen as a
category of cancer on their own, and are often studied separately because they greatly
differ from adult cancers. Second, the RTBF mainly concerns young adults and active
life.

Out of a total of 161,007 tumors, melanoma, thyroid and breast cancer represent,
respectively, 29,213 (18.1%), 12,241 (7.6%) and 119,553 (74.3%) cases diagnosed between
2004 and 2020. Patients were followed-up until April 11, 2022, resulting in a follow-up
ranging from 2 to 18 years. Only one record per patient (with the earliest incidence
date) within each cancer site was kept for patients with multiple primary diagnoses.
A minority of patients without national security number were excluded from the
analysis. Patients lost to follow-up (mostly due to moving abroad) and patients
still alive at the end of the follow-up period were treated as censored observations.
Censoring is assumed to be uninformative.

Table 5.1 summarizes the number of included cases, number of deaths and per-
centage of lost to follow-up before April 11, 2022 per type of cancer, sex and age
group. The fraction of patients lost to follow-up per subgroup varied from 1.31% for
women with breast cancer aged 50-69 to 4.1% for male thyroid cancer patients aged
20-34. The total fraction of patients lost to follow-up cases, regardless of sex, site
or age group was 1.64%. Moreover, mean age at diagnosis was 50.5 years (standard
deviation 12.1), 48.1 years (standard deviation 12.4) and 54.6 years (standard deviation
9.5) for melanoma, thyroid and breast cancer, respectively.

For the mortality in the general population, Belgian population life tables are
available from Statbel (the Belgian statistical office) and can be freely downloaded
from the website www.statbel.fgov.be.

5.4 Critical assessment

In this section, we revisit previous studies by Soetewey et al. (2021) and Van Ginckel
et al. (2022) to underline their possible shortcomings.
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Sex Cancer Age at Lost to Number of Number of
site diagnosis follow-up included cases deaths

Men Melanoma 20-34 3.72% 969 94
35-49 2.66% 3,266 404
50-69 1.70% 7,460 1,583

Total 11,695 2,081
Men Thyroid 20-34 4.10% 366 6

35-49 3.12% 961 67
50-69 2.14% 1,773 379

Total 3,100 452
Women Melanoma 20-34 3.62% 2,488 78

35-49 1.47% 6,137 382
50-69 1.35% 8,893 1,112

Total 17,518 1,572
Women Thyroid 20-34 3.80% 1,607 14

35-49 2.67% 3,449 107
50-69 2.06% 4,085 484

Total 9,141 605
Women Breast 20-34 2.76% 3,112 502

35-49 1.78% 32,743 4,058
50-69 1.31% 83,698 15,946

Total 119,553 20,506

Table 5.1: Number of persons diagnosed with melanoma, thyroid and female breast cancer
in Belgium between 2004 and 2020 (BCR data) by sex, site and age group, together with the
percentage of lost to follow-up and the number of deaths
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5.4.1 Impact of extrapolation in case of limited follow-up

In this paper, we analyze survival time from diagnosis for cancer patients according
to a number of covariates summarized into the vector 𝒛. Specifically, 𝑇 denotes the
remaining lifetime at diagnosis, so time from diagnosis to death. Given 𝒛, 𝑇 has
probability density function 𝑓 (·|𝒛), distribution function 𝐹 (·|𝒛), survival function
𝑆 (·|𝒛) = 1− 𝐹 (·|𝒛), and hazard 𝜆(·|𝒛) = 𝑓 (·|𝒛)/𝑆 (·|𝒛). Contrarily to insurance studies,
𝑇 denotes the remaining lifetime after diagnosis and age at diagnosis is included as a
covariate (attained age is thus obtained by summing age at diagnosis and survival
time). The link with the international actuarial notation for survival probabilities and
hazard is as follows: if the insurance applicant aged 𝑥 has been diagnosed with cancer
at age 𝑥 −𝑤 then

𝑠𝑝𝑥 =
𝑆 (𝑤 + 𝑠 |age at diagnosis = 𝑥 −𝑤)
𝑆 (𝑤 |age at diagnosis = 𝑥 −𝑤)

𝜇𝑥+𝑠 = 𝜆(𝑤 + 𝑠 |age at diagnosis = 𝑥 −𝑤) .

Relative survival provides a measure of the excess mortality experienced by cancer
patients by comparing the mortality in the cancer population with the mortality
in the general population. Relative survival models are divided into additive and
multiplicative models. Despite the wide acceptance of multiplicative specifications
within the actuarial community, additive models are generally applied in cancer
studies. The additive specification is thus adopted in this paper. The hazard 𝜆(𝑡 |𝒛)
at time 𝑡 since diagnosis for cancer patients with covariate vector 𝒛 is decomposed
into two additive components: the population hazard based on available patient’s
characteristics 𝒛, denoted as 𝜆𝑃 (𝑡 |𝒛), and the excess hazard specific for the disease of
interest, denoted as 𝜆𝐸 (𝑡 |𝒛). Formally,

𝜆(𝑡 |𝒛) = 𝜆𝑃 (𝑡 |𝒛) + 𝜆𝐸 (𝑡 |𝒛). (5.2)

In (5.2), 𝜆𝑃 (·|𝒛) usually corresponds to general population life tables. Here, the
covariate vector 𝒛 corresponds to age and it is the same in 𝜆𝑃 (𝑡 |𝒛) and 𝜆𝐸 (𝑡 |𝒛).

Remontet et al. (2019) and Fauvernier et al. (2019a,b) proposed a flexible parametric
model to (i) allow for a flexible modeling of the baseline excess hazard, (ii) account
for non-linear and non-proportional effects of covariates and (iii) allow for a flexible
interaction between several covariates adopting a multidimensional penalized splines
approach. This leads to the specification

ln 𝜆𝐸 (𝑡 |𝒛) =
𝐽∑︁
𝑗=1

𝑔 𝑗 (𝑡, 𝒛) (5.3)

where 𝑔 𝑗 (·, ·) are uni- or multidimensional penalized spline function. This model has
the advantage that the splines bring the flexibility needed for modeling the hazard
and the penalty terms control this flexibility for smooth estimation. In Soetewey et al.
(2021), excess hazard was estimated using the flexrsurv package in R (Clerc-Urmès
and Grzebyk, 2023), assuming non-linear and non-proportional hazard for age at
diagnosis. More precisely, it was based on a model with a spline of the type truncated
power basis, with degree 2 and a knot at one year after diagnosis.
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Cancer Age at Waiting period (in years)
site diagnosis Soetewey et al. (2021) Alternative extrapolation method
Melanoma 30 9 >10
Melanoma 50 3 4
Thyroid 30 1 1*
Thyroid 50 1 1
Breast 30 >10 >10
Breast 50 3 6

Table 5.2: Waiting periods by cancer site and age at diagnosis. The star indicates that EPV
does not stay below XK level but start to increase a few years after diagnosis

Let us proceed as in Soetewey et al. (2021) and determine the waiting period
opening the RTBF as the smallest duration after diagnosis so that the expected present
value of mortgage insurance benefits gets back to the premium determined according
to XK life table. This is represented in Figures 5.1 and 5.2 for a patient diagnosed at
the age of 30 and 50, respectively. The left panels are based on the estimation and
extrapolation method adopted in Soetewey et al. (2021), that is, based on the excess
hazard obtained from a model with splines of the type truncated power basis, with
degree 2 and a knot at one year after diagnosis. This was implemented in the R package
flexrsurv. The right panels are based on an alternative method implemented in the
R package rstpm2 (Jakobsen et al., 2020; Liu et al., 2017, 2018; Zhan et al., 2018). For
this alternativemethod, we used a flexible parametric survivalmodel with proportional
hazards and 3 degrees of freedom for modelling the baseline log-cumulative hazard.
These characteristics have been chosen to obtain excess hazards that are as similar
as possible to the ones obtained with the flexrsurv package, and other scenarios
revealed drastically different patterns for the two considered ages at diagnosis. The
resulting waiting periods are listed in Table 5.2. They are obtained by considering
that patients become insurable at standard conditions when the EPV reaches the
level set by the XK life table. We can see in Table 5.2 that for melanoma and female
breast cancer diagnosed at age 50, the waiting periods determined as in Soetewey
et al. (2021) are smaller compared to the alternative extrapolation method. For thyroid
cancer patients aged 30, the waiting period remains 1 year but EPV exceeds XK level
a few years later according to the alternative extrapolation method. For melanoma
cancer diagnosed at age 30, the reduced waiting period determined as in Soetewey
et al. (2021) is contradicted by the alternative extrapolation method.

This example shows that conclusions may rely to a large extent on the extrapola-
tion method, even more so when one considers different model parameters. This is
not acceptable in the context of the RTBF. The aim of this paper is to propose a new
approach, only using the available data (so without the need to extrapolate mortality
rates beyond 10 years).

5.4.2 Conditional relative net survival

Van Ginckel et al. (2022) applied a pure biostatistical approach based on an arbitrary
cut-off of 0.99 for the conditional net survival to propose reduced waiting periods for
breast cancer. This section explains why their apparently sound methodology fails to
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Figure 5.1: Expected present value (EPV) of a life insurance contracted by a 30-year-old cancer
patient for a period of 20 years with interest of 1 percent and benefit of 100 000. Horizontal
dashed lines correspond to EPV calculated according to XK life table
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Figure 5.2: Expected present value (EPV) of a life insurance contracted by a 50-year-old cancer
patient for a period of 20 years with interest of 1 percent and benefit of 100 000. Horizontal
dashed lines correspond to EPV calculated according to XK life table
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convince actuaries.
In accordance with actuarial notation, let 𝑞𝑦 = 1−𝑝𝑦 be the one-year death proba-

bility at age𝑦 (that is, the probability of dying before age𝑦+1 given that the individual
is alive at age 𝑦). Probabilities, corresponding to general population mortality, are
henceforth denoted as 𝑝NIS𝑦 and 𝑞NIS𝑦 where “NIS” refers to the National Institute of
Statistics (Statbel based in Brussels; www.statbel.fgov.be). Likewise, denote as
𝑝CR𝑥,𝑤 and 𝑞CR𝑥,𝑤 these probabilities for an individual of age 𝑥 who was diagnosed with
cancer𝑤 years ago, so at age 𝑥 −𝑤 . Here, “CR” refers to Cancer Registry established
at national level.

The “conditional relative net survival” referred to in Section 4.2.1 of Van Ginckel
et al. (2022) can be interpreted as the ratio 𝑝CR𝑥,𝑤/𝑝NIS𝑦 . The reduced waiting period is
then determined as the smallest𝑤 such that 𝑝CR𝑥,𝑤/𝑝NIS𝑦 > 0.99. Their argument is that
the resulting𝑤 ensures that surviving patients’ mortality is very close to the general
population one. However, when translated into premium calculation, this rule turns
out to produce large increases. Indeed, considering that patients can be covered at
standard conditions once they have survived𝑤 years after diagnosis, with one-year
survival probability

𝑝CR𝑥,𝑤 = 0.99𝑝NIS𝑦 (5.4)

means that

𝑞CR𝑥,𝑤 = 1 − 𝑝CR𝑥,𝑤 = 1 − 0.99𝑝NIS𝑦 = 𝑞NIS𝑦 + 0.01𝑝NIS𝑦 .

Hence, the one-year death probability (driving the amount of premium for a one-
year term insurance) is increased by 1% times the corresponding one-year survival
probability. The impact of this rule greatly varies according to age 𝑥 :

■ if 𝑞NIS𝑦 = 0.001 then this results in an actual one-year death probability

0.001 + 0.01 × 0.999 = 0.01099

which means that the one-year death probability (and hence the yearly term
insurance premium) is multiplied by 10, approximately.

■ if 𝑞NIS𝑦 = 0.01 then this results in an actual one-year death probability

0.01 + 0.01 × 0.99 = 0.0199

which means that the one-year death probability (and hence the yearly term
insurance premium) is multiplied by 2, approximately.

Considering the typical age range where mortgage insurance is sold, the rule retained
by Van Ginckel et al. (2022) allows for mortality levels which largely exceed those
corresponding to general population.

5.5 Proposed approach for limited follow-up

Clearly, the rule defining reduced waiting periods for the RTBF must be expressed
in terms of premiums. The question about the RTBF centers on evaluating extra
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claim costs and sharing them among stakeholders in a fair and transparent way. This
can only be achieved by computing actual premiums at age 𝑥 in function of the
time 𝑤 elapsed since diagnosis, and by comparing them to the reference levels XK
corresponding to regulatory expected costs.

Let 𝜋XK
0 be the amount of premium obtained from (5.1) when survival probabilities

and death rates correspond to the XK life table. Then, formula (5.1) is used again to
obtain the additive increase in mortality compared to the general population level.
Precisely, the additive mortality shift 𝛾 is the unique positive root of the equation

𝜋XK
0 =

𝑛−1∑︁
𝑘=0

exp

(
−
𝑘−1∑︁
𝑗=0

(
𝜇NIS𝑦+𝑗 + 𝛾

))
(1 + 𝑖)−𝑘𝑐𝑘

(
𝜇NIS
𝑦+𝑘 + 𝛾

)
1 − exp

(
−

(
𝜇NIS
𝑦+𝑘 + 𝛾

) ) 1+𝑟
1+𝑖

𝜇NIS
𝑦+𝑘 + 𝛾 − ln(1 + 𝑟 ) + ln(1 + 𝑖)

.

(5.5)

The solution is unique because the right-hand side of this equation is increasing in 𝛾
and the left-hand side is larger than the right-hand side when 𝛾 = 0 because the XK
life table is conservative. The solution is therefore such that 𝛾 > 0.

Following the idea of (5.4), we propose to define the waiting period opening the
RTBF as the smallest𝑤 such that

𝑝CR𝑥,𝑤 = exp(−𝛾)𝑝NIS𝑦 . (5.6)

In this case, we recover a constraint on the conditional observed survival, but with
the arbitrary 0.99 level replaced with exp(−𝛾) controlling premium. Following (5.6),
the waiting period opening the RTBF is determined as the smallest 𝑤 such that
𝑝CR𝑥,𝑤/𝑝NIS𝑦 > exp(−𝛾). To apply this rule, 𝑝NIS𝑦 can easily be found within Belgian
population life tables, available from Statbel. The calculation of 𝑝CR𝑥,𝑤 is explained in
Appendix A.2.

Let us now apply this method to get the length of the waiting period opening the
RTBF. To this end, survival probabilities of cancer patients, obtained via a flexible
parametric model (using the mexhaz R package (Charvat and Belot, 2021) and based
on a baseline hazard specified as the exponential of B-splines of degree 2 with a knot
at 2.5 years of follow-up), are first compared with the observed survival probabilities
obtained with the nonparametric Kaplan-Meier (1958) estimator. The results are
displayed in Figure 5.3. It can be seen from Figure 5.3 that observed survival curves
obtained via a flexible parametric model and via the Kaplan-Meier estimator are very
similar for all cases under consideration (i.e., for both ages at diagnosis and for all
three cancers of interest).

Secondly, conditional one-year observed survival probabilities (denoted 𝑝CR𝑥,𝑤)
are computed via a flexible parametric model with baseline hazard specified as the
exponential of B-splines of degree 2 with a knot at 2.5 years of follow-up (determined
after having explored different numbers and positions of time knots for the spline
basis). More information can be found in Appendix A.2. 𝑝CR𝑥,𝑤 are compared with the
conditional one-year observed survival probabilities obtained based on the Kaplan-
Meier estimator (henceforth denoted as 𝑝KM𝑥,𝑤) in Figure 5.4. Here, probabilities 𝑝KM𝑥,𝑤
are computed with increments of 0.1 year and are referred as the KM-based method in
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Figure 5.3: Survival probabilities (with 95% confidence interval) by cancer site and age at
diagnosis. Mexhaz-based method corresponds to the probabilities obtained via a flexible
parametric model (dashed line), whereas KM-based method corresponds to the ones obtained
based on the nonparametric Kaplan-Meier estimator (solid line)

the remainder of the text since these probabilities are computed based on the Kaplan-
Meier estimator. The difference with a standard Kaplan-Meier estimator is that 𝑝KM𝑥,𝑤
correspond to conditional one-year observed survival probabilities (instead of simply
observed survival probabilities). In practice, 𝑝KM𝑥,𝑤 are found by computing one-year
survival probabilities using the survival R package (Terry M. Therneau and Patricia
M. Grambsch, 2000), repeatedly for each subgroup of patients who survived at least
0, 0.1, 0.2, . . . , 10 years since diagnosis. The advantage of computing 𝑝KM𝑥,𝑤 this way
is that the provided confidence intervals are usable, which is not the case if 𝑝KM𝑥,𝑤
are computed by dividing the survival probability at a given time by the survival
probability one year earlier. The goal of comparing 𝑝CR𝑥,𝑤 with a counterpart based on
a nonparametric reference such as the Kaplan-Meier estimator is to demonstrate that
results obtained with the proposed approach are trustworthy.

Figure 5.4 shows that conditional one-year survival probabilities obtained via the
flexible parametric model follow globally the same trend than the ones obtained via
the KM-based method for all scenarios, except for the first year after diagnosis for
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Figure 5.4: Conditional one-year survival probabilities (with 95% confidence interval) by cancer
site and age at diagnosis. Mexhaz-based method corresponds to the probabilities obtained via a
flexible parametric model, 𝑝CR𝑥,𝑤 , whereas KM-based method corresponds to the ones obtained
based on the nonparametric Kaplan-Meier estimator, 𝑝KM𝑥,𝑤
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Cancer Age at Waiting period (in years)
site diagnosis Our approach KM-based
Melanoma 30 > 10 10
Melanoma 50 6 6
Thyroid 30 1 Uncertain
Thyroid 50 1 2
Breast 30 > 10 > 10
Breast 50 > 10 > 10

Table 5.3: Waiting periods by cancer site and age at diagnosis computed via our approach and
via the KM-based method

patients diagnosed with melanoma cancer at age 50. We consider that conditional
one-year observed survival probabilities are reasonably well estimated with our
approach when compared to a nonparametric reference. Furthermore, for a given
sample size, confidence intervals are narrower with our approach compared with
the nonparametric Kaplan-Meier, a reason to prefer the new approach over the
nonparametric reference.

To determine the waiting period opening the RTBF, conditional one-year survival
probabilities obtained via the two approaches, that is, 𝑝CR𝑥,𝑤 and 𝑝KM𝑥,𝑤 , are divided by
the conditional one-year survival probabilities in the general population, that is, 𝑝NIS𝑦 .
Results are displayed in Figure 5.5. For the sake of comparison, the waiting period
opening the RTBF is determined as the smallest𝑤 such that 𝑝CR𝑥,𝑤/𝑝NIS𝑦 > exp(−𝛾) or
such that 𝑝KM𝑥,𝑤/𝑝NIS𝑦 > exp(−𝛾). Dividing 𝑝CR𝑥,𝑤 and 𝑝KM𝑥,𝑤 by 𝑝NIS𝑦 allows the comparison
with the additive correction exp(−𝛾). Here, 𝛾 = 0.0014 at age 30 and 𝛾 = 0.0063 at
age 50. Notice the difference with the threshold of 0.99 set in Van Ginckel et al. (2022),
as exp(−𝛾) equals 0.998601 and 0.9937198 for a patient diagnosed at age 30 and 50,
respectively. Also note that, for patients aged 30 years at diagnosis, 𝑝KM𝑥,𝑤 is actually
computed based on patients aged between 25 and 35 years at diagnosis. For patients
aged 50 years at diagnosis, 𝑝KM𝑥,𝑤 is computed based on patients aged between 45 and
55 years at diagnosis. This is to include more patients and thus have more stable
estimates. Indeed, samples of patients diagnosed at exactly 30 and 50 years old have
a limited size, in particular for thyroid cancer. Considering patients aged from 25
to 35 and from 45 to 55 instead of patients of exactly 30 and 50 years old does not
undermine our analyses, as patients within each age group are very similar in terms
of survival.

Results are displayed in Table 5.3 and Figure 5.5. Remember that an increasing
ratio is a sign of better prognosis for cancer patients. On the other hand, a decreasing
ratio is a sign that survival for cancer patients declines over the years since diagnosis,
so a sign of worse prognosis compared to the general population. Following this,
and in order to be as conservative as possible, if the ratio of conditional one-year
survival probability reaches the level of the additive correction more than once within
the 10-year period after diagnosis, the waiting period is set as the largest time after
diagnosis where the ratio of survival probabilities crosses the additive correction level.
Notice also the emergence of small jumps when plotting the ratio of the conditional
survival probabilities in Figure 5.5 resulting from the division by the one-year survival
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Figure 5.5: Ratio of conditional one-year survival probability (with 95% confidence interval)
by cancer site and age at diagnosis, together with the additive correction exp(−𝛾) (horizontal
dashed lines). Mexhaz-based method corresponds to 𝑝CR𝑥,𝑤/𝑝NIS𝑦 , whereas KM-based method
corresponds to 𝑝KM𝑥,𝑤/𝑝NIS𝑦
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probabilities 𝑝NIS𝑦 in the general population.
From Table 5.3 and Figure 5.5, we can see that waiting periods are below 10 years

for melanoma cancer patients aged 50 years at diagnosis, and thyroid cancer patients
aged 30 and 50 at diagnosis. Waiting periods obtained via the KM-based method
are below 10 years for melanoma and thyroid cancer patients aged 50 at the time
of diagnosis. For all other scenarios, waiting periods are equal or above 10 years
after diagnosis. When comparing the two approaches, waiting periods are relatively
equivalent for all considered subgroups except for thyroid cancer patients diagnosed
at 30 years old, who have an uncertain waiting period via the KM-based method (since
the ratios of conditional one-year survival probabilities fluctuate around the level set
by the additive correction from 0 to 10 years after diagnosis). Moreover, breast cancer
patients diagnosed at age 30 have a waiting period above 10 years while it is equal to
10 years according to the KM-based calculation. Recall that, as advocated in Soetewey
et al. (2021), these waiting periods start at the time of diagnosis, and not at the end of
the therapeutic protocol as it is the case with the current legislation.

5.6 Impact of the stage of the tumor

One could argue that mortality and thus the waiting period opening the RTBF varies
between cancer patients diagnosed at different tumor stages. As this information
is available in BCR, this section refines the preceding analyses by cancer stage at
diagnosis.

Information on both the clinical and pathological staging has been combined to
define a final tumor stage. First, clinical staging is an estimate of the extent of the
cancer based on results of physical exams, imaging tests, endoscopy exams, biopsies,
and for some cancers, the results of other tests, such as blood tests. Second, the
pathological staging (also called the surgical stage) is an estimate of the extent of
the cancer that is based on the results of pathological examination of the resection
piece after surgery. In some cases, the pathological stage is different from the clinical
stage, for instance, if the surgery shows the cancer has spread more than was seen on
imaging tests. A common practice is to combine these two methods to obtain a so-
called combined stage. When the pathological stage is known, it is taken as combined
stage, unless there is clinical evidence of metastasis. In case the pathological stage
is unknown, the clinical stage is retained. Combining the clinical and pathological
stage limits missing values (missing combined stage appears only when both the
clinical and pathological stages are missing). This combined stage is considered in
this section.

Stages I, II, III and IV were considered. Tumors with an unknown stage at the time
of diagnosis, representing 7.5% of all tumors, have been ignored. Number of included
cases, number of observed deaths, one-year and 5-year observed survival probabilities
(obtained with the nonparametric Kaplan-Meier estimator) by cancer site and stage
of the tumor are displayed in Table 5.4. Given the small number of observations for
stages III and IV, these two stages have been combined for the analyses. Furthermore,
to ensure simplicity and given that cancer patients diagnosed at stages I and II are
relatively similar in terms of survival, these two stages have also been combined.

The present section is aimed at studying the appropriateness of stratifying the
RTBF according to the stage of the tumor at diagnosis: waiting periods are computed
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Cancer Tumor Number Number 1-year survival 5-year survival
site stage of cases of deaths prob. (95% CI) prob. (95% CI)
Melanoma I 20,949 1,153 0.997 (0.996-0.997) 0.970 (0.968-0.973)

II 3,019 777 0.980 (0.975-0.985) 0.802 (0.786-0.817)
III 1,669 537 0.949 (0.939-0.960) 0.711 (0.688-0.735)
IV 444 327 0.658 (0.615-0.703) 0.298 (0.257-0.345)

Thyroid I 8,071 311 0.995 (0.994-0.997) 0.979 (0.976-0.982)
II 946 73 0.989 (0.983-0.996) 0.961 (0.948-0.974)
III 841 134 0.993 (0.987-0.999) 0.942 (0.926-0.958)
IV 617 294 0.779 (0.747-0.812) 0.625 (0.587-0.665)

Breast I 56,039 4,813 0.996 (0.995-0.996) 0.965 (0.964-0.967)
II 37,935 5,979 0.992 (0.991-0.993) 0.926 (0.923-0.929)
III 11,919 3,922 0.976 (0.973-0.979) 0.805 (0.798-0.813)
IV 5,639 3,839 0.829 (0.819-0.839) 0.390 (0.377-0.404)

Table 5.4: Number of included cases, number of observed deaths, one-year and 5-year observed
survival probabilities (with 95% confidence interval) by cancer site and stage of the tumor.
Survival probabilities are obtained with the nonparametric Kaplan-Meier estimator

separately for patients diagnosed at stages I–II and at stages III–IV using our proposed
approach. This will serve as a comparison with results obtained before, where all
stages are included. Note that, as the additive correction exp(−𝛾) depends only on
age at diagnosis, it differs between patients diagnosed at 30 and 50 years old, but it is
the same for all stages and it remains the same when including all stages. Notice that
the nonparametric Kaplan-Meier reference is no longer used because stratifying by
stage reduces drastically the number of observations, in particular for stages III and
IV. This rises the issue of the accuracy of the Kaplan-Meier estimator, and therefore
reduces its usefulness in the context of the RTBF.

Results of the stratification by stage at diagnosis are displayed in Table 5.5 and
Figure 5.6. Waiting period is lower for patients diagnosed at stages I–II compared
to patients diagnosed at stages III–IV for all scenarios. In particular, compared to
patients diagnosed at all stages, when including only patients diagnosed at stages
I–II, waiting periods are reduced from 6 to 4 years for melanoma cancer patients
aged 50, reduced from 1 to 0 year for thyroid cancer patients aged 50, and reduced
from more than 10 years to 7 years for female breast cancer patients aged 50. For
melanoma cancer patients aged 30, thyroid cancer patients aged 30 and breast cancer
patients aged 30, waiting periods remain the same whether it is calculated by stage
or for all stages combined. This shows that, for the three cancer sites considered,
stratifying the analyses according to the stage has no impact on the waiting periods
for patients diagnosed at the age of 30, but has an impact for patients diagnosed at
the age of 50. This can be partly explained by the fact that, among patients diagnosed
at a young age, a small proportion is diagnosed at stages III–IV. For instance, only
8.36% of patients aged 30 or below at the time of diagnosis are diagnosed at stages
III–IV. Furthermore, we observe that the waiting period is above 10 years for patients
diagnosed at stages III–IV for all scenarios.

Notice that 95% confidence intervals for stages I–II (Figure 5.6) are narrower than
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Cancer Age at Proposed approach Soetewey et al. (2021)
site diag. Stages I–II Stages III–IV All stages All stages
Melanoma 30 > 10 > 10 > 10 9
Melanoma 50 4 > 10 6 3
Thyroid 30 1 > 10 1 1
Thyroid 50 0 > 10 1 1
Breast 30 > 10 > 10 > 10 NA
Breast 50 7 > 10 > 10 NA

Table 5.5: Comparison of waiting periods by cancer site and age at diagnosis resulting from
our approach and from Soetewey et al. (2021)

when all stages are considered (Figure 5.5), although the sample size is smaller when
including only patients diagnosed at stages I–II. This is explained by the fact that,
for the same sample size, standard errors for probabilities closer to 0% or 100% are
smaller. Therefore, even though the sample size is smaller for stages I–II than for all
stages combined, confidence intervals are narrower because probabilities are closer
to 100% for this subgroup of patients. Also notice that confidence intervals do not
widen with time since diagnosis, contrarily to what would be expected given that the
sample size decreases with time since diagnosis. The following elements explain this
phenomenon. We only consider age at diagnosis 20-69 years. Survival is high for this
age range and the cancer types considered, so 10 years after diagnosis will not yet
be long enough to see a clear increase in the length of the confidence intervals. And
again, when survival probabilities approach 100%, the confidence intervals become
smaller for a given number of observations. A similar pattern for the conditional
net survival has been found in Van Ginckel et al. (2022) for female breast cancer.
Calculations of the confidence intervals are further explained in Appendix A.2.

5.7 Discussion

To sum up, let us compare waiting periods obtained with our approach with results
obtained according to the method proposed by Soetewey et al. (2021), which are based
on the time after diagnosis when the expected present value of a standard mortgage
insurance reaches the same level than the one based on XK life table. A summary
is displayed in Table 5.5. We can see that waiting periods are sensibly the same
for thyroid cancer patients across all methods, while they are slightly higher when
estimated via the approach proposed in this paper for melanoma cancer patients. Note
that no comparison is made for breast cancer, as this cancer site was not considered
in Soetewey et al. (2021).

Results in Table 5.5 are in line with the reduced waiting periods specified in the
Belgian legislation. Furthermore, results are also in line with the AERAS convention
(i.e., the reference grid used in France), which stipulates that the RTBF is maximum 6
years after the end of the therapeutic protocol for melanoma and thyroid cancers.

Nonetheless, an important difference is that in this paper, all waiting periods
opening the RTBF are based on the time since diagnosis, rather than on the time
since the end of the therapeutic protocol as currently implemented in the Belgian
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and French reference grids. As duration of cancer treatments are unpredictable and
heterogeneous (even within the same cancer site and stage), a RTBF based on the date
of diagnosis rather than based on the treatment end date will benefit both patients
and insurers. Indeed, patients will know exactly when they can expect to benefit from
this RTBF, and insurers will face less uncertainties (as the date of diagnosis is known
and fixed, contrarily to the treatment end date which is difficult to establish and may
change over time depending on the patient’s health status) and less prone to debates
(about, for instance, what is considered as treatment or not).

Although data used in the analyses cover a relatively long period of time (year
of diagnosis ranges from 2004 to 2020) with diagnostic criteria and methods that
have evolved and improved over that period, calendar time has not been included
for two main reasons. First, the limited number of cases available (in particular since
the focus is on young adults) prevents another division between different cohorts.
Second, given that medicine and treatments progress with time, survival of cancer
patients also improve with time. Thus, the resulting potential bias of omitting a
cohort effect appears to be conservative, as the actual time for the patients to reach a
survival comparable to that of the general population will decrease with improving
treatments. In addition to that, population data are used whereas outstanding balance
insurance applicants belong to the upper socio-economic class who usually have better
prognosis, and individuals who contract a home or professional loan are generally
in good health as individuals with poor health are unlikely to embark on such a
project. These selection effects imply that analyses conducted in the present paper
are conservative in many respects.

One could argue that waiting periods are expected to be shorter for patients
diagnosed at stages III–IV compared to patients diagnosed at stages I–II, as we would
expect when comparing patients diagnosed with pancreatic and breast cancer. The
idea behind this reasoning is that the worse the prognosis, the quicker the patients
die after diagnosis and thus the quicker only the survivors remain. Results of the
stratification by stage show that it is not the case. The following arguments explain
it. Statistical cure in the case of female breast cancer is not yet achieved within 15
years after diagnosis (except for stage I), while it is achieved for pancreatic cancer
at around 5 years after diagnosis. Indeed, for female breast cancer, excess hazard is
relatively constant and non negligible even after many years after diagnosis, with late
recurrences occurring up to 20 years after diagnosis. On the contrary, for aggressive
cancers, excess hazard is much less constant over the years after diagnosis, and in
the case of pancreatic cancer it becomes negligible around 5 years after diagnosis.
Given the difference in excess mortality between breast and pancreatic cancer, it
is reasonable to expect waiting periods to be shorter for pancreatic than for breast
cancer. Although melanoma and thyroid cancers are nowhere near as aggressive as
pancreatic cancer, the trend of the excess hazard for these two cancers is closer to
pancreatic than to breast cancer, that is, excess hazard is not constant over the years
after diagnosis, it becomes negligible only after some years after diagnosis and late
recurrences are rare. This explains the shorter waiting periods for melanoma and
thyroid cancers compared to female breast cancer. The same reasoning can be applied
to the comparison of the waiting periods between stages of the tumor. One could
expect that the more advanced the stage, the more quickly only the survivors remain
and thus the shorter the waiting period. This holds only if statistical cure is reached at
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a given time after diagnosis (and in particular within 10 years after diagnosis to argue
for a reduced waiting period opening the RTBF). For female breast cancer, the excess
hazard for stages III–IV is higher than for stages I–II up to 15 years after diagnosis,
resulting in waiting periods that are not shorter for stages III–IV compared to stages
I–II.

Results obtained in the present study focus on melanoma, thyroid and female
breast cancer patients for illustrative purposes. The approach developed in this paper
can be applied to other cancer types or diseases. However, as just discussed, it cannot
be used in case of late recurrences nor to chronic diseases to argue a shorter waiting
period. For some cancers with late recurrences such as breast cancer, the waiting
period resulting from our proposed approach when including patients diagnosed at all
stages of the tumor is (much) longer than if it was proposed only to patients diagnosed
at stages I–II. For melanoma and thyroid cancers, the waiting period resulting from
our proposed approach when including patients diagnosed at all stages of the tumor
is relatively similar than if it was proposed only to patients diagnosed at stages I–II.
This demonstrates that, besides the fact that computing the waiting period should
be done by stage for female breast cancer while it is not compulsory for melanoma
and thyroid cancers, cancer is not one disease, but a family of many diverse diseases
with different outcomes. Therefore, the proposed method should be applied on a
case-by-case basis, that is, cancer by cancer. This is left for future research.

As mentioned in Section 5.1, the method proposed by Soetewey et al. (2021)
remains actuarially sound if the length of the follow-up is long enough. It could be
argued, however, that even when registry data have a sufficiently long follow-up
period, the method proposed in this paper would still be preferable since a long
follow-up means that some patients have been diagnosed a long time ago, and are
thus not treated as well as nowadays. This argument is all the more valid the longer
the follow-up time, as the longer the follow-up, the greater the potential increase in
treatment efficacy between the beginning and end of the follow-up period.

The proposed approach can obviously be applied in other countries by replacing
the databases by the appropriate ones. Moreover, other cancer sites and other diseases
which qualify for the RTBF (e.g., HIV, some types of hepatitis and leukemia) are left
for future research. This would undeniably be useful to improve the reference grids
in Belgium and other countries, and ultimately, to improve access to such insurance
products for other types of surviving patients.

5.8 Additional notes

As mentioned in Section 2.7, insurers have a keen interest in assessing the confidence
level of the point estimates calculated. To this aim, Figures 5.1 and 5.2 have been
adapted (see Figures 5.7 and 5.8) to include 95% confidence intervals, which will help
to better illustrate the uncertainty associated with the estimated duration required
for the EPV to revert back to a standard level (as derived from the XK life table).
Confidence intervals are obtained in the same way as in Chapter 2, that is, using the
lower and upper bounds of the mortality hazard (obtained via the standard errors
associated with the predictions).

Moreover, as mentioned in Section 5.7, no comparison was made for breast cancer,
as this cancer was not considered in Soetewey et al. (2021). For the interested reader,
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Figure 5.7: Adaptation of Figure 5.1 to include 95% confidence intervals
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Cancer Age at Proposed approach Soetewey et al. (2021)
site diag. Stages I–II Stages III–IV All stages All stages
Melanoma 30 > 10 > 10 > 10 9
Melanoma 50 4 > 10 6 3
Thyroid 30 1 > 10 1 1
Thyroid 50 0 > 10 1 1
Breast 30 > 10 > 10 > 10 > 10
Breast 50 7 > 10 > 10 3

Table 5.6: Adaptation of Table 5.5 to include female breast cancer

the missing comparison can be obtained thanks to the bottom left panel of Figures
5.7 and 5.8 (for 30 and 50 years old at policy issue, respectively). Furthermore, Table
5.5 has been adapted (see Table 5.6) to include the comparison with female breast
cancer. We can see that, for women diagnosed with breast cancer at 30 years old,
waiting periods are above 10 years after diagnosis irrespective of the method used.
For women diagnosed with breast cancer at 50 years old, waiting period is larger (i.e.,
above 10 years instead of 3 years after diagnosis) when estimated via the proposed
approach in this chapter.
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Comparative analysis and
recommendations for the
right to be forgotten in
cancer research

6

6.1 Introduction

The objective of this chapter is to synthesize the findings from the comparative
analysis of the various methods applied to a unified dataset, with a particular focus
on formulating recommendations regarding the implementation of the right to be
forgotten (RTBF) for cancer patients in Belgium. This chapter aims to consolidate the
insights gained from previous analyses, providing a cohesive discussion that addresses
both the statistical and practical implications of the RTBF in the context of cancer.

Remember that the RTBF is a legal concept that allows individuals, under certain
conditions, not to declare their cancer when applying for insurance. Belgium is a
special case in the sense that applicants must still declare their pathology to insurers,
but the insurers cannot take it into account or can only take it into account within
certain limits, depending on legal or regulatory provisions. As mentioned in Chapter 1,
if the treatment ended more than 8 years ago and no relapse occurred, the insurer
can no longer consider a history of cancer when evaluating the application. In other
words, after this delay a cancer diagnosis cannot be used by the insurer as a reason to
apply a surcharge, impose an exclusion, or deny coverage. Note that if the diagnosis
was made before the age of 21 the period is reduced to 5 years, and as from January
2025 it will be reduced to 5 years for all individuals regardless of the age at diagnosis.
A reference grid outlining more favorable waiting periods for certain types of cancer
has been added to the system through a Royal Decree dated May 26, 2019. This
restrictive list of cancer pathologies concerns nine cancers (i.e., testicular, breast,
skin melanoma, cervix, kidney, colorectal, thyroid, Hodgkin’s lymphoma and acute
promyelocytic leukemia (APL)), with waiting periods varying from 1 to 8 years from
end of treatment and depending on factors such as histological type, stage of the tumor
or age at diagnosis. Based on the proposal from the KCE and following advice from the
Bureau du suivi de la tarification, a Royal Decree dated June 7, 2023, amended the initial
reference grid. It revised downwards the reduced waiting periods for certain cancers
(i.e., testicular, breast and Hodgkin’s lymphoma), introducing a distinction based on
whether the individual was aged over or under 21 at the time of cancer diagnosis.
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Particularly noteworthy is that for a specific type of breast cancer (“Tis N0 M0”, which
denotes in situ tumor localized solely within the duct where it originated, without
lymph node or metastatic involvement), there is now no longer a waiting period for
the right to be forgotten. The reduced waiting periods applicable to other cancers
listed in the initial reference grid (i.e., kidney, cervix, thyroid, colorectal, leukemia,
melanoma) remain unchanged. Note that since several of these reduced periods still
exceed 5 years, they will need to be reassessed to align with the introduction of a
standard 5-year waiting period effective January 1, 2025.

After the waiting period specified in the reference grid has elapsed and conditional
on the absence of other risk factors or existing pathologies, the insurer cannot consider
the cancer when determining the current state of health. This right has significant
implications for cancer survivors seeking financial products such as insurance. With
medical advancements increasing the survival rates for many cancers, the need for fair
and equitable treatment in the financial sector has becomemore pressing. This chapter
evaluates the effectiveness of different methodologies in determining appropriate
waiting periods for the RTBF, using the same dataset to ensure consistency and
comparability.

The analysis presented in this chapter considers several key aspects:

■ The differences in survival rates among various cancer types and how these
affect the recommended waiting periods opening the RTBF.

■ The impact of varying waiting periods from diagnosis on the eligibility for the
RTBF.

■ The practical challenges and benefits of implementing the RTBF from the
perspective of both patients and insurers.

The conclusions drawn from this comparative analysis are intended to inform policy
recommendations and provide a framework for future research. By focusing on the
specific needs and outcomes of cancer survivors, this chapter aims to contribute to
the ongoing dialogue on reconciling the rights of individuals with the operational
requirements of the insurance industry.

For the sake of readability and conciseness, findings presented in the present
chapter differ from previous chapters on threemajor points. First, results are presented
in a different order than how they appear in this thesis. Results in the present chapter
go from the most general to the most specific ones, which is deemed more appropriate
for the targeted audience and the goal of the chapter. Second, not all results from
previous chapters are presented, but only a summary of the most important ones so
that they can easily be shared to interested parties. Third, all results in this chapter are
based on the same data, whereas previous chapters sometimes considered different
cohorts.

The remainder of this chapter is structured as follows. Section 6.2 presents the
data used in this chapter. Section 6.3 introduces the probabilities of developing one
of the three cancers considered over the next 20 years for a healthy individual (cfr.
Chapter 4). This serves as a first overview of the potential risk and burden of each
cancer. Section 6.4 presents the waiting periods opening the RTBF, estimated based
on our methods proposed in Chapter 5. This shows how differences in survival among
different cancer types influence the recommended waiting period opening the RTBF.

130



6.2. DATA

Section 6.5 illustrates one of the insurance product developed in Chapter 3, targeted
to cancer patients waiting to benefit from the RTBF. The final Section 6.6 concludes
the chapter with a discussion, expressed in the form of recommendations concerning
the RTBF in insurance for the cancers studied.

6.2 Data

The chapter utilizes data from the Belgian Cancer Registry (BCR), which has system-
atically recorded all new cancer cases in Belgium since 2004. Cancer registration was
mandated by law in 2006, with vital status updates linked to the Belgian Crossroads
Bank for Social Security until April 2022, ensuring data completeness and quality. Fur-
ther information can be accessed on the BCRwebsite at www.kankerregister.org.
Belgian population life tables used for mortality comparisons are available from Stat-
bel’s website, at www.statbel.fgov.be.

The study focuses on melanoma (ICD-10 C43), thyroid (ICD-10 C73), and female
breast cancer (ICD-10 C50), chosen for their varying excess hazard levels and mortality
patterns over time. The analysis includes patients aged 20 to 69 at diagnosis, excluding
childhood cancers and those without a national security number. From 161,007 cases,
there were 29,213 melanoma cases (18.1%), 12,241 thyroid cases (7.6%), and 119,553
female breast cancer cases (74.3%) diagnosed between 2004 and 2020. Follow-up data
extends up to April 2022, with a range of 2 to 18 years. Only the earliest cancer
diagnosis was considered for patients with multiple primary cancers. Patients lost to
follow-up (mostly due to moving abroad) or still alive at the end of the study were
treated as censored observations.

Table 6.1 provides a detailed breakdown of the number of included cases, deaths,
and percentage of lost to follow-up by cancer type, sex, and age group. The overall
proportion of patients lost to follow-up, irrespective of sex, cancer type, or age group,
was 1.64%. Additionally, the mean age at diagnosis was 50.5 years (standard deviation
12.1) for melanoma, 48.1 years (standard deviation 12.4) for thyroid cancer, and 54.6
years (standard deviation 9.5) for female breast cancer.

6.3 Cancer incidence risk

Cancer is a dynamic and evolving disease, with incidence rates influenced by a myriad
of factors ranging from advancements in medical diagnostics to changes in lifestyle
and environmental exposures. In recent years, the landscape of cancer has been shaped
by improvements in early detection and shifts in demographic patterns, leading to
varying trends in cancer incidence across different populations. Cancer incidence risk,
which refers to the probability of developing cancer within a specified population over
a certain period, is crucial for grasping the burden of cancer, planning public health
strategies, and allocating resources effectively. For insurers, understanding these
evolving risks is essential for developing accurate underwriting practices, setting
premiums, and managing reserves.

Figure 6.1 shows the probability for a healthy individual of a given age to be
diagnosed, over the next 20 years, with each of the three cancers of interest. These
results, based on Belgian data, can be interpreted as the expected proportion of
the Belgian population to be diagnosed with each of the three cancer types over
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Sex Cancer Age at Lost to Number of Number of
site diagnosis follow-up included cases deaths

Men Melanoma 20-34 3.72% 969 94
35-49 2.66% 3,266 404
50-69 1.70% 7,460 1,583

Total 11,695 2,081
Men Thyroid 20-34 4.10% 366 6

35-49 3.12% 961 67
50-69 2.14% 1,773 379

Total 3,100 452
Women Melanoma 20-34 3.62% 2,488 78

35-49 1.47% 6,137 382
50-69 1.35% 8,893 1,112

Total 17,518 1,572
Women Thyroid 20-34 3.80% 1,607 14

35-49 2.67% 3,449 107
50-69 2.06% 4,085 484

Total 9,141 605
Women Breast 20-34 2.76% 3,112 502

35-49 1.78% 32,743 4,058
50-69 1.31% 83,698 15,946

Total 119,553 20,506

Table 6.1: Number of persons diagnosed with melanoma, thyroid and female breast cancer
in Belgium between 2004 and 2020 (BCR data) by sex, site and age group, together with the
percentage of lost to follow-up and the number of deaths
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Figure 6.1: Probabilities of being diagnosed with breast, melanoma and thyroid cancer over
the next 𝑛 = 20 years for a healthy individual as function of age 𝑡 ∈ {20, 21, . . . , 40}

the next 20 years, assuming no major changes in factors such as screening policies,
diagnostic tests, demographics, or unforeseen events that could significantly impact
these projections. Remember that for melanoma and thyroid cancers, it should be
interpreted as the expected proportion on the whole population while for breast
cancer, it should be interpreted as the expected proportion only among women. For
instance, among women aged 40 it is expected that slightly more than 5% of them
will be diagnosed with breast cancer until the time they reach the age of 60, whereas
it is expected that less than 1% of women and men aged below 40 will be diagnosed
with thyroid or melanoma cancer until they reach the age of 60.

6.4 Waiting periods opening the right to be forgotten

Soetewey et al. (2023) introduced a new methodology to determine the waiting period
opening the RTBF for cancer survivors in the context of mortgage insurance. This
method estimates the waiting periods based on available data, focusing on comparing
the conditional one-year observed survival probabilities of cancer patients to those of
the general population without requiring extrapolation of mortality rates beyond ten
years. The new approach calculates the smallest duration after diagnosis at which the
expected present value (EPV) of insurance benefits aligns with premiums determined
by standard life tables, such as the XK life table.

Results for all stages combined are reported in the last column of Table 6.2, and
can be summarized as follows. For melanoma cancer, the waiting period is found
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Cancer Age at Waiting periods (in years)
site diag. Stages I–II Stages III–IV All stages
Melanoma 30 > 10 > 10 > 10
Melanoma 50 4 > 10 6
Thyroid 30 1 > 10 1
Thyroid 50 0 > 10 1
Breast 30 > 10 > 10 > 10
Breast 50 7 > 10 > 10

Table 6.2: Waiting periods (in years) by cancer site and age at diagnosis, for all stages combined
and by stage of the tumor

to exceed 10 years for patients diagnosed at age 30, while it is 6 years for patients
diagnosed at age 50. For thyroid cancer, the waiting period remains consistent at
1 year for patients diagnosed at 30 and 50 years old. For female breast cancer, the
waiting period exceeds 10 years for patients diagnosed at ages 30 and 50. Results by
stage of the tumor are reported in the third and fourth columns of Table 6.2, and can
be summarized as follows. For patients diagnosed at stages I-II, waiting periods are
below 10 years for (i) patients diagnosed with thyroid cancer at ages 30 and 50, and
(ii) patients diagnosed with melanoma and female breast cancer at age 50. Waiting
periods exceed 10 years for patients diagnosed with melanoma and female breast
cancer at age 30. The analysis reveals that for patients diagnosed at stages III–IV, the
waiting period is above 10 years in all scenarios (the two considered ages at diagnosis
and the three cancers of interest). This shows that, for the three cancers considered,
stratifying the analyses according to the stage has no impact on the waiting periods
for patients diagnosed at the age of 30, but has an impact for patients diagnosed
at the age of 50 (partly explained by the fact that, among patients diagnosed at a
young age, a small proportion is diagnosed at stages III–IV). Moreover, results show
that waiting periods should be computed by stage for female breast cancer, whereas
they could (but does not necessarily have to) be computed by stage for thyroid and
melanoma cancers. This supports the fact that cancer is not one disease, but a family
of many diverse diseases with different outcomes. It is therefore recommended to
assess waiting periods on a cancer-by-cancer basis rather than a single waiting period
for all cancer types.

Note that all waiting periods presented here are to be considered from the date
of diagnosis, and not from the end of the therapeutic protocol as it is the case with
the current legislation. The proposed method provides consistent and reliable results
by avoiding the need for long-term extrapolation, making it particularly suitable
for cancers where treatment efficacy has improved. This approach can be adapted
for different cancer types and diseases, potentially improving access to mortgage
insurance for survivors of various long-term illnesses. Given the robustness and
applicability to modern treatment outcomes of the proposed method, we suggest its
use in updating reference grids in Belgium and other countries.
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6.5 Mortgage insurance for cancer patients

Property loans typically includes mortgage insurance that pays off the remaining
balance if the borrower dies. This insurance is usually structured as term insurance
with a decreasing death benefit, aligning with the gradual repayment of the loan.
This practice is common in countries like France and Belgium. When insurers refuse
to cover the risk of premature death, it can create significant obstacles to property
ownership and entrepreneurship by preventing banks from issuing loans.

Soetewey et al. (2022) aimed to provide beneficiaries the option to obtain mortgage
insurance at standard conditions, even if diagnosed with cancer, subject to a 2-year
deferred period (so that access to mortgage insurance at standard rate is granted
two years after diagnosis). See Section 3.3.4 for more information about how this
2-year deferred period is obtained. The contract specifies the loan’s characteristics,
such as the borrowed amount, amortization schedule, and maximum loan-to-value
ratio. The insured sum is the difference between the actual single premium and the
reference single premium computed using standard life tables. This approach reflects
the anticipated cost in the Belgian market, similar to a decision made by Crédit Mutuel
in France, with the analysis limited to single premiums to reduce the insurer’s risk.

The reference single premium for mortgage insurance covering the loan per the
policy conditions at a given age represents the baseline cost. The actual premium,
accounting for the additional mortality risk associated with cancer for a patient
diagnosed at a specific time, is adjusted accordingly. The insured sum is the differ-
ence between these premiums. To prevent under-pricing, the worst-case scenario is
considered, assuming policyholders will exercise their option at the worst time for
the insurer. In this analysis, a typical 20-year home loan in Belgium serves as the
reference, with a borrower taking out a loan of 100,000€ at a 2% interest rate, and a
technical interest rate for mortgage insurance set at 1% over the 20-year term. This
setup represents a standard scenario in the Belgian market. Results are displayed
by cancer site in Figure 6.2, with the upper panel showing the sum insured (i.e., the
difference between the actual and reference premiums), and the lower panel repre-
senting the worst-case expected present value of the corresponding differences. Note
that when the difference between the reference and the actual premium is negative,
the cover is not needed since cancer patients can be covered at standard premium
rates. This is the case for thyroid cancer since the actual premium falls below the
reference premium two years after diagnosis.

It can be seen that premiums tend to increase with age and is higher for can-
cers with higher incidence rates, such as breast cancer. The findings confirm that
the product is affordable for younger individuals and those with cancers such as
melanoma and thyroid, which have lower incidence rates. This also supports the
development of insurance products that address the specific needs of cancer patients
during the waiting period opening the RTBF. It is recommended, however, to evaluate
the feasibility of such insurances products cancer-by-cancer, as costs may greatly vary
according to cancer type. To maintain affordability for older individuals and patients
diagnosed with higher-incidence cancers, insurers could potentially start by adjusting
the deferred period, the maximum borrowed amount, the contract duration, etc. This
would ensure greater access to necessary financial services for cancer patients, while
maintaining profitability for the insurer.
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Figure 6.2: Differences Π𝑖
𝑥+𝑡+2;2 −Π𝑋𝐾

𝑥+𝑡+2 according to age 𝑥 + 𝑡 ∈ {20, 21, . . . , 50} in the upper
panel and EPVwc (𝑥, 𝑛, 2) for 𝑥 ∈ {20, 21, . . . , 40}, with 𝑛 = 20, yearly interest rate 1% in the
lower panel
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6.6 Recommendations for the RTBF in insurance for cancer
patients

The comprehensive analysis presented in this chapter underscores the complexities
and nuances involved in implementing the RTBF in insurance for cancer survivors.
Several key insights emerge from our study, each bearing significant implications for
policy and practice.

First, the variations in survival rates among different cancer types require a
tailored approach to determine waiting periods opening the RTBF. For instance, while
melanoma and thyroid cancers generally exhibit shorter waiting periods, breast cancer
requires significantly longer durations before patients can benefit from the RTBF. This
disparity highlights the importance of adopting a cancer-specific framework rather
than a one-size-fits-all model, ensuring that each survivor’s risk profile is accurately
reflected in insurance policies.

Second, the stage of the tumor at diagnosis plays a crucial role in determining
appropriate waiting periods. Our findings indicate that patients diagnosed at later
stages (III-IV) face uniformly longer waiting periods across all cancer types studied,
emphasizing the need for cancer-specific assessments. This approach not only en-
sures fairness but also aligns with the medical realities of cancer prognosis, thereby
supporting a more equitable system for cancer survivors seeking financial products.

From a practical standpoint, implementing the RTBF requires careful consideration
of both patients’ and insurers’ perspectives. For patients, the RTBF represents a
significant step towards financial inclusion, home ownership and entrepreneurship.
However, for insurers, the challenge lies in balancing this inclusivity with the financial
risks associated with potential higher mortality rates among cancer survivors. Our
proposed methodology, which avoids long-term extrapolation and uses expected
present value calculations, offers a robust solution that can be adapted for various
cancer types, potentially serving as a model for updating reference grids in Belgium
and other countries.

Furthermore, the analysis of mortgage insurance products tailored for cancer
survivors suggests that while such products are feasible, they require careful calibra-
tion to remain affordable and practical. Adjustments to deferred periods, maximum
loan amounts, maximum ages at policy issue, amortization schedules and contract
durations are recommended to ensure that these products meet the needs of cancer
survivors without imposing undue financial burdens on insurers. This balance is
essential for maintaining the sustainability of insurance markets while promoting
access to necessary financial services for those affected by cancer.

In light of these findings, several key recommendations emerge, taking into
account the existing policies in Belgium. In 2019, Belgium implemented the RTBF in
insurance, initially setting a waiting period of 10 years after successful treatment for
all cancers (and 5 years if the diagnosis occurred before the age of 18). Since then, the
waiting period has been reduced to 8 years for all cancers and has even been further
reduced for certain cancer types, reflecting ongoing adjustments to align with updated
medical data and survival rates. Building on these efforts, policy recommendations
should further advocate for the establishment of cancer-specific waiting periods that
more precisely reflect the distinct survival rates and risk profiles associated with
different cancer types. The proposed methodology for calculating waiting periods—
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focusing on comparing the conditional observed survival of cancer patients to that
of the general population—offers a consistent and reliable approach that can be
broadly applied across the different cancer types and diseases which qualified for the
RTBF. Although there are already some insurance products specifically designed for
cancer survivors in Belgium, such as the Femina cover sold by AG Insurance and
the critical illness/dread disease insurance offered by several insurers, these options
remain limited. Insurers should therefore consider developing additional mortgage
and insurance products for cancer survivors, incorporating flexible terms to balance
affordability and risk. Finally, as advocated in Meunier (2024), policymakers should
support legislative measures that facilitate the adoption and refinement of the RTBF,
ensuring that cancer survivors are not unfairly discriminated against in the financial
sector while building on the foundations already in place.

By addressing these recommendations, stakeholders can work towards a more
inclusive and equitable system that recognizes the unique challenges faced by cancer
survivors while ensuring the sustainability and fairness of insurance practices. This
chapter aims to contribute to the ongoing dialogue on balancing individual rights
with operational requirements, providing a foundation for future research and policy
development in this critical area.
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Conclusion 7
In this thesis, we proposed new statistical methods pertaining to survival analysis
and actuarial sciences. The objective of this work was mainly to propose new and
effective tools to address some central questions arising in biostatistics and actuary,
and to illustrate, using Belgian data, these methods in the context of the right to be
forgotten in insurance. The remainder of the conclusion is structured as follows. We
first propose a general discussion and briefly recall the major points and contributions
of our studies. Certain inquiries arising from our research remain unresolved. We
conclude this PhD thesis by delving into several of these questions, along with
proposing potential directions for future investigation.

7.1 General discussion

The current research initiated from the premise that a growing number of patients
having survived cancer faced difficulties to access mortgage insurance securing home
loan. This problem was all the more acute as, thanks to medical advances, more and
more patients were surviving their cancer. In response to this observation and backed
by studies showing that mortality of some cancer types was indeed close to that of the
general population after a few years after a successful treatment, France took the lead
by introducing, in 2016, the right to be forgotten in the context of insurance. Noting
the same phenomenon, and driven by the desire to reduce financial and emotional
discrimination against cancer survivors, the right to be forgotten began to take effect
in Belgium in 2019. Although the implementation of this right was already a major
step forward for cancer survivors at that time, we believed that there was still room
for improvement. Following this, through our research, we aimed at studying and
improving the right to be forgotten in the context of insurance. In particular, we
investigated the waiting period opening this right but starting from diagnosis, and
with a focus on mortgage insurance issued to cancer survivors. This was done through
several complementary approaches.

First, based on the underlying assumption that some patients who had cancer in
the past exhibit a survival comparable to that of cancer-free individuals, we started
our research by estimating the time after diagnosis after which melanoma and thyroid
cancer patients could have access to a mortgage insurance at the same rate as cancer-
free applicants. This time was based on when, after diagnosis, the expected present
value of a standard mortgage insurance reached the same level than the one expressed
by means of regulatory life tables. This was the main goal of Chapter 2. Through
this chapter, it has been shown that the time from diagnosis after which melanoma
and thyroid cancer patients can be covered at standard premium rate (and hence,
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have access to the right to be forgotten) is relatively short. More precisely, it has
been demonstrated that, for thyroid cancer patients, a waiting period of 4 years after
diagnosis is enough for 30-year-old cancer patients, and a waiting period of 3 years
after diagnosis is enough for 50-year-old patients. Moreover, a waiting period of 8
years after diagnosis is sufficient for 50-year-old melanoma cancer patients. A major
contribution is that we promote a waiting period opening the right to be forgotten
starting at the time of diagnosis instead of starting after a successful treatment. The
date of diagnosis, registered in the national cancer registry, beingmuch less ambiguous
and subject to debates than the treatment end date (in particular given that duration
of treatments can vary considerably and treatment success may affect the end date),
this limits uncertainties for all parties and reduces disagreements in case of death.
These findings align with the reduced waiting period outlined in Belgian legislation,
where thyroid and melanoma cancer patients gain access to the right to be forgotten
within a relatively short time frame; maximum 3 and 6 years after the end of the
therapeutic protocol for thyroid and melanoma cancers, respectively. Note that it is
undeniable that including the gender would have refined the analysis, as considerable
gaps are observed between women and men in terms of survival for some cancer
types. However, gender has been ignored on purpose considering the 2012’s European
directive on equality between women and men, stipulating that gender can no longer
have an influence on the premiums nor on the coverage conditions of outstanding
balance insurances.

Second, we continued our research based on the observation that the right to
be forgotten was very binary, in the sense that an individual had access to it either
entirely or not at all. Therefore, the goal was to develop financial products that
allowed patients to be covered while waiting for the right to be forgotten to take
effect, these products obviously being subject to additional premiums or adapted
coverage conditions that reflect the aggravated risk the individuals represent. Towards
that end, Chapter 3 introduced several insurance covers, with one of them granting
access to a mortgage insurance during the waiting period opening the right to be
forgotten. This product is especially important at young ages to guarantee access to
property and home ownership to cancer patients whose health status has improved
but who cannot benefit from the right to be forgotten because the waiting period is
not exhausted yet. It has been shown that insurance products can be developed to
address the particular needs of patients during the waiting period opening the right
to be forgotten, but that costs greatly vary according to cancer type. More precisely,
suppose a cover option which offers the policyholder the option to obtain mortgage
insurance at standard conditions even if he or she has been diagnosed with cancer,
but which cannot be executed before the end of a waiting period of 2 years starting
from the date of diagnosis. It has been demonstrated that this product is not needed
for thyroid cancer patients, as these patients can be covered at standard rates after
the 2-year waiting period. Furthermore, it has been shown that the cost appears
to be moderate for melanoma cancer patients, implying that such product could be
proposed by insurance providers.

Third, we decided to look at the problem from another angle. The idea was to
quantify the number of years of life a cancer cohort loses during the repayment period
of a mortgage insurance. Given that a mortgage insurance has a finite horizon, any
year of life lost due to cancer (i.e., in addition to the number of years the general
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population would have lost due to population mortality) during this repayment period
is a year during which the client does not pay back the loan, whereas any year of life
lost due to cancer after the loan has been fully reimbursed is not seen as a lost year
from the insurer’s perspective. Towards that end, the aim was to quantify the risk of
developing cancer for a healthy individual and the number of years of life lost due to
cancer given that the patient already survived some years after diagnosis. We expect
that results can then easily be linked with the potential financial losses for insurance
providers, which would then be able to assess whether or not the mutualization
mechanism could take effect for the studied cancers. Chapter 4, which thus focused
on estimating the risk of developing cancer for a healthy individual and the number
of years of life lost due to cancer given that the patient already survived some years
after diagnosis, conveyed two key messages. First, the probability of being diagnosed
with cancer over a 20-year period remain below 1% for melanoma and thyroid cancers
for both sexes. Second, for melanoma and thyroid cancer patients diagnosed between
the age of 20 and 70 years, once they have survived their cancer for 10 years, the
number of years of life lost before the age of 70 due to cancer remains below one year.
For women diagnosed with breast cancer, once they survived 10 years after diagnosis,
the number of years of life lost before the age of 70 due to cancer remains below 2
years. This indicates that, up to the age when most people have finished paying off
their loan, melanoma, thyroid and female breast cancer patients who survived their
cancer for at least 10 years after diagnosis lose a limited number of years of life due
to their cancer compared to that of the general population. Furthermore, based on
the age at which the number of years of life lost due to cancer start to decrease over
the years, it has also been shown that, no matter whether the patient survived 0, 5
or 10 years after diagnosis, melanoma cancer patients approach the same mortality
risks as of the general population (i.e., excess mortality decreases) from the age of 45.
Thyroid cancer patients approach the general population mortality risks from the age
of 50, whereas female breast cancer patients observe a decreasing excess mortality
from the age of 20.

Fourth, Chapter 5 extended results found in Chapter 2 in two ways. First, the
method proposed in Chapter 2 to determine the waiting period opening the right to
be forgotten required data up to 30 years after diagnosis, or extrapolating results up
to that time horizon. When survival data are only available over a shorter duration
(which is likely with recent cancer registries), it turned out that results may strongly
depend on the extrapolation method chosen. This is why an alternative method
has been proposed, based on a constraint imposed to the premium, which is then
transposed into a target on the conditional observed survival and the waiting period
follows. A second extension was that the impact of the stage of the tumor at diagnosis
on waiting periods has been investigated. Our proposed alternative method has shown
that, when all stages of the tumor were considered, the waiting periods opening the
right to be forgotten were sensibly the same for thyroid cancer (1 year after diagnosis
for 30 and 50-year-old patients), while they were slightly higher when estimated via
the alternative approach for melanoma cancer (more than 10 years, and 6 years after
diagnosis for, respectively, 30 and 50-year-old patients). Results have shown to be still
aligned with the waiting periods specified in the Belgian legislation (maximum 6 years
after the end of the therapeutic protocol for melanoma and thyroid cancers). When
analyses were stratified by the stage of the tumor at diagnosis, results have shown that
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the waiting period is lower for patients diagnosed at stages I–II compared to patients
diagnosed at stages III–IV for all scenarios (the two considered ages at diagnosis and
the three cancers of interest). In particular, compared to patients diagnosed at all
stages, when including only patients diagnosed at stages I–II, waiting periods are
reduced from 6 to 4 years for melanoma cancer patients aged 50, reduced from 1 to 0
year for thyroid cancer patients aged 50, and reduced from more than 10 years to 7
years for female breast cancer patients aged 50. For melanoma cancer patients aged
30, thyroid cancer patients aged 30 and breast cancer patients aged 30, waiting periods
remain the same whether it is calculated by stage or for all stages combined. This
shows that, for the three cancer sites considered, stratifying the analyses according
to the stage has no impact on the waiting periods for patients diagnosed at the age of
30, but has an impact for patients diagnosed at the age of 50 (partly explained by the
fact that, among patients diagnosed at a young age, a small proportion is diagnosed
at stages III–IV). Furthermore, it has been shown that the waiting period is above 10
years for patients diagnosed at stages III–IV for all scenarios.

The methodologies and illustrations presented in this thesis collectively align
towards the shared objective of reducing the waiting period opening the right to be
forgotten until it more closely reflects the real risk posed by patients suffering or
having suffered from cancer. Based on the results provided in the present thesis, we
also believe that this objective involves starting the waiting period from the date of
diagnosis.

As of today, eight European Member States (France, Belgium, The Netherlands,
Portugal, Romania, Spain, Cyprus and Italy) out of the 27 have implemented a legal
framework to protect cancer survivors from financial discrimination when seeking
a loan, a mortgage, or a life insurance. Thanks to progress in medicine, prognosis
of several types of cancer has greatly improved over the last decades, supporting
the implementation of legal frameworks protecting cancer survivors’ rights. This
thesis attempts to shed light on different methods that can be used to measure the
viability and sustainability, both from a statistical and actuarial perspective, of a
reduced waiting period opening the right to be forgotten. Furthermore, we hope that
the illustrations presented in this work will convince countries currently lacking such
rights to adopt the necessary protections in order to end financial discrimination
against cancer survivors. This unified direction would certainly be a substantial
advancement for long-term cancer survivors and the society as a whole, not to
mention the insurance industry since proper coverage of such risks may well produce
attractive returns.

As one could expect, some questions that came up during this work remain
unanswered. We develop upon some of them in the next section, together with
avenues for future research.

7.2 Future research

The field of cancer research is currently extremely lively, and the number of applica-
tions in the statistical and actuarial literature keeps on growing steadily. Additionally,
the right to be forgotten is a topic of great importance to the governments, institutions
and insurance providers of several European countries. Still, many questions and
challenges remain to be faced, some of which are potential areas for further research.
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We list them below, categorized into global and individual research perspectives.

7.2.1 Global research perspectives

First, as already mentioned, we advocate for using the date of diagnosis instead of the
end of the therapeutic treatment as a starting point for defining the waiting period
opening the right to be forgotten. Nonetheless, it could be argued that the length
of cancer treatments may have significantly decreased over the considered period
(i.e., 2004-2022). A comparison between our approach and one based on the end of
treatment would be valuable, in order to investigate the potential differences in terms
of length of the waiting period resulting from the two approaches. However, several
significant challenges impede such an analysis. First, the lack of individual treatment
data in national registries makes it difficult to accurately determine treatment end
dates. Second, the definition of treatment completion is somewhat subjective, varying
greatly across different countries, cancer types and treatment protocols. This subjec-
tivity and variability further complicate the analysis, reinforcing our support for using
the diagnosis date. Additionally, if medical advancements have indeed shortened
treatment durations, this would likely bring both approaches into closer alignment,
mitigating some of the differences. Nonetheless, these complexities highlight the
difficulties in performing such analyses and underscore the rationale for our chosen
approach.

Second, calendar time has not been included in the analyses conducted in the
present thesis. However, approaches presented in this thesis are dependent on factors
such as changing diagnostic criteria and improved diagnostic methods. To illustrate
this, suppose that a medical advance allows a cancer to be diagnosed earlier and
perhaps also at a less severe stage, with the consequence that more cases are detected
and that detected cases are not as fatal. These refined diagnostic methods will most
likely imply an increased survival probability, regardless of whether the treatment
improved or not. One could thus argue that not distinguishing between patients
diagnosed recently and those diagnosed many years ago could hinder a potential
cohort effect. Although this holds, there are two arguments which limits the benefits
of differentiating patients based on the diagnosis year or period. First, recall that
we concentrate on young adults because of the products under consideration and
cancer mainly affects people from a more advanced age. Combined with the fact
that the obligation to report all cases of cancer to a registry is relatively recent in
Belgium, this implies that there are, at least currently, a limited amount of cases
available. Therefore, performing analyses for different cohorts separately may, at
the moment, actually decrease the precision of the estimators and the stability of the
results due to smaller sample sizes to such an extent that it would lead to unsound
conclusions. Second, earlier diagnoses tend to be associated with better efficacy of
the treatment and better prognosis. Given that medical treatments improved over the
last decades, the resulting bias of ignoring a potential cohort effect favors insurance
providers. We believe that, as long as patients survival increases (thanks to improved
treatments for instance), ignoring a potential cohort effect will favor insurers, as the
better the prognosis, the lower the risk of covering cancer survivors at the same rate
as cancer-free clients. Along the same lines, one could argue whether or not results
based on historical survival data can be generalized for the future, that is, used by
insurance providers for the next generations of patients. In other words, can results
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obtained based on survival of patients diagnosed up to a few years ago be used for
patients who will be diagnosed in a few or many years from now? On this matter,
we believe that results remain valid and accurate as long as patients’ survival stays
similar across the years. In the case where survival improves over the years, results
obtained in the present thesis could be considered as conservative and prudent from
the perspective of the insurer. On the contrary, it is clear that if survival decreases
throughout the years, results obtained based on data from the past decades may not
be extrapolated to the future, and should therefore be applied with caution.

Third, the 3-state Semi-Markov model, introduced in Chapter 3, is used for in-
surance covers typically limited to the first cancer occurrence. A promising avenue
of research for the future would be to combine several types of cancer into a single
model to design products offering against more than just one cancer. Considering
the three cancer sites presented in this thesis, the 3-state model would result in a
hierarchical Semi-Markov model with 5 states, with the ill state replaced with 3
states, corresponding to thyroid, melanoma and breast cancer. A natural extension
to this general setting would be to construct a model with as many states as types
of cancer, in addition to the active and dead state. Of course, distinguishing among
cancer types is only relevant if coverage conditions vary with cancer site. In the
same vein, instead of a model with as many states as types of cancer, one could add a
state for recurrence to our 3-state model, resulting in a 4-state model. Furthermore,
other innovative solutions could be envisaged from an actuarial point of view (e.g.,
insurance products targeted to two individuals, couples, etc.), and other methods from
the biostatistical/epidemiological domain could be considered (e.g., a-splines, joint
models, etc.).

Fourth, Arık et al. (2020) showed, in a comprehensive study using UK data, that
for female breast cancer there are regional differences in terms of cancer morbidity.
Regional differences may occur for other cancer sites as well. In the present thesis,
analyses have been conducted at the national level and not at the regional level,
mainly because in Belgium it is the location of the hospital which matters the most
rather than the region where the patient lives, and because it goes beyond the scope
of this thesis which primarily aimed at illustrating new methods in the context of
the right to be forgotten. A valuable complement to this research would be to refine
the analyses at a regional level instead of national level. However, it is important to
note that performing analyses at the regional level can present significant challenges,
particularly in the context of insurance. Such an approach may inadvertently lead to a
situation where only patients living in regions with a high socioeconomic profile are
insured, potentially exacerbating disparities and limiting access to necessary coverage
for individuals living in less affluent regions. This risk underscores the complexity
and ethical considerations involved in regional-level analyses, suggesting that while
valuable, such refinements must be approached with caution and a comprehensive
understanding of their broader implications.

7.2.2 Individual research perspectives

First, in this thesis, the assumption is made that a cancer patient cannot become
healthy again, that is, transition from the ill to the healthy state is not possible. Given
that this assumption is believed to be reasonable for most cancers and since in our
context, the real transition of interest is more from ill to dead than from ill to healthy,
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only irreversible multi-state models have been considered. Furthermore, this non-
reversibility greatly simplifies the computations, as in this case, our 3-state process is
hierarchical and trajectories can be described in terms of just a few random variables
(Denuit et al., 2019). However, one may argue that it does not always hold, and in that
case more advanced multi-state models (such as, among others, reversible models)
should thus be preferred. Another advantage of using a reversible model that allows
the transition from ill to healthy is that cancer recurrence could be taken into account.
This is undoubtedly an interesting question, but left for future research.

Second, for cancer patients, quality of life may be considered as important as the
length of life itself (Shrestha et al., 2019). Therefore, other indicators than the number
of years of life lost due to cancer such as, among others, the disability-adjusted life
years (DALY) could also have been considered. Given that it is particularly useful for
diseases or conditions that cause significant disability or do not result in death (such
as diabetes or HIV), this seems to be a promising avenue for future research.

Third, it has been argued that the method proposed in Chapter 2 remains actuari-
ally sound if the length of the follow-up is long enough such that no extrapolation
is needed. Ignoring the fact that even when registry data have a sufficiently long
follow-up period, the alternative method could still be preferable since a long follow-
up means that some patients have been diagnosed a long time ago (and are thus not
treated as well as nowadays), it could be interesting to compare both approaches to
see, if there are indeed differences, what impact they have on the waiting periods.

Fourth, an enduring challenge within the insurance domain concerns whether
mortality rates observed in the general population can be used by insurers to set
premium rates. This question comes from a well-recognized principle in the insurance
literature that mortality rates for insured populations may differ (and likely be lower)
from those of the general population due to factors like socioeconomic status, access
to healthcare, lifestyle choices, etc. For insurance providers, accessing the mortality
data specific to the insured population alone would more closely mirror real risks
than using mortality data for the general population. In this thesis, when excess
cancer mortality was required, mortality in the cancer population has been compared
to the expected mortality in the general population. We did not account for the
fact that mortality of the general population may not be identical to the one of the
insured population. Mortality rates observed in the insured populations are, however,
not so easy to estimate or obtain, mainly due to the fact that data provided by the
National Bank of Belgium pertain to the number of insurance companies with whom
the deceased policyholders held contracts, rather than the actual count of deaths. This
implies that some individuals appear several times in the data, which makes it difficult
to estimate precisely the number of deaths and thus the mortality rates. In addition
to this challenge, it is also essential to consider the specific characteristics of the
populations being studied. The differentiation between the general population and
the insured population is not the only nuance to address; we must also distinguish
between the populations studied in this thesis and those targeted by the current
framework of the right to be forgotten. The patients in this study are selected based
on the date of diagnosis, which differs from those who benefit from the right to
be forgotten, typically involving individuals who have survived cancer diagnosis,
completed their treatments, and lived for a specified period post-treatment. This
latter group may represent a healthier cohort compared to those who survived some
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years after diagnosis but may not have completed their treatments. This distinction
highlights the complexity in extrapolating findings and underscores the need for
careful interpretation.

Fifth, as it has been shown, a crucial aspect of conducting studies presented in
the present thesis involves accessing follow-up data for both the general population
and the cohort affected by the pathology of interest. Nonetheless, disease-specific
registries are frequently either nonexistent, incomplete, or unreliable. When it comes
to assessing the survival of individuals with a particular pathology lacking appropriate
registry data, one potential approach is to utilize data from cohorts or registries in
other countries and adapt them to the specific context of the country under investiga-
tion. A valuable extension would thus be to develop a way to facilitate the use of an
existing registry from another country to project survival probabilities in the studied
country.

Sixth, if we would like to go one step further when estimating the right to be
forgotten by stage of the tumor, we should probably consider the model from Touraine
et al. (2020) rather than the one from Esteve et al. (1990). The reason for preferring
the former over the latter is that the corresponding general population may not
be exactly the same for patients diagnosed at stages I–II and patients diagnosed at
stages III–IV. Indeed, patients diagnosed at stages III–IV may be more likely to have
comorbidities than patients diagnosed at stages I–II. For example, in lung cancer, it is
well known that smokers are diagnosed at a later stage. This happens because the
first symptoms (usually a cough) often mask the cancer; smokers usually find out
they have cancer quite late (or at least, later than for other cancers) because they
cannot easily distinguish whether the symptoms are a consequence of their smoking
habits or a consequence of having cancer. Therefore, for lung cancer, it could be
that the proportion of smokers is greater in the group of people diagnosed at stages
III–IV than in the group of people diagnosed at stages I–II. If this is indeed the case,
neither of these two groups is really comparable to the general population because
non-smokers are healthier overall, and smokers have many other comorbidities. To
sum up, the question is whether we can consider the same general population for
both groups of patients. Verification of these assumptions, and whether adjustments
are needed to account for this potential bias, are left for future research. Additionally,
note that estimating the right to be forgotten by stage of the tumor makes sense only
if survival for patients diagnosed at stages I–II is different from survival for patients
diagnosed at stages III–IV.

Seventh, as mentioned on several occasions, insurers have a keen interest in
assessing the confidence level of the point estimates calculated. To this aim, several
methods have been proposed in this thesis to assess uncertainty associated with our
results. In Chapter 2, confidence intervals are obtained using the same methodology
as for the point estimates, except that lower and upper bounds of the confidence
intervals are computed based on the lower and upper bounds of the predicted mortal-
ity hazard. In Chapter 3, confidence intervals are obtained through simulations (i.e.,
1,000 bootstrap samples are generated by resampling with replacement). In Chapter
4, confidence intervals are obtained after fitting a smoothing function of the type
local polynomial regression to the estimations of the number of years of life lost. In
Chapter 5, confidence intervals are obtained from the Kaplan-Meier estimator, using
the survival package in R. As we can see, confidence intervals are computed using
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four distinct methods, which helps to illustrate the range of possibilities. While none
of these methods is perfect, they each contribute to assessing the uncertainty associ-
ated with our results. Future research could explore the development of additional
methods to enhance the accuracy and applicability of confidence intervals, and should
specifically focus on validating these intervals through simulation studies to evaluate
their coverage probability and accuracy. This would help verify the reliability of the
proposed methods and enhance the credibility of the obtained uncertainty estimates.

Last but not least, another research idea would be to study other cancer sites. In
this thesis, we focused on melanoma, thyroid and female breast cancers to illustrate
the proposed methods on a sample of cancer types with clear differences in terms of
incidence rates and survival prognosis. These three cancer sites have also been chosen
as they are relatively common in Belgium and they are diagnosed at a relatively young
age compared to other cancers. However, cancer is not one disease, but a family of
many diverse diseases with different outcomes. Therefore, our findings cannot be
applied to other cancer types blindly. Note also that in situ cancer cases have not
been included in the present studies as they are not classified the same way as any
other “regular” cancer cases. A natural extension of this work would be to repeat the
analyses for all major cancer types, and perhaps even to in situ cancers. Moreover,
the proposed approaches can obviously be applied to other countries. This would
certainly be useful for implementing appropriate market rules, and for defining a
tailor-made waiting period for each type of cancer, so that it closely reflects the real
risks and patients’ vital prognosis. In the same spirit, another intriguing research
idea would be to apply these methodologies to other chronic diseases for which
the right to be forgotten has been implemented, such as HIV, leukemia or some
types of hepatitis. The methodologies could even be applied to chronic diseases for
which the right to be forgotten do not yet exist, but for which the excess mortality
becomes small or even negligible after some years after diagnosis. This is the case,
for instance, for some subgroups of type 1 diabetic (T1D) patients. In this vein, based
on an analysis of mortality and life expectancy of 40,000 Belgian patients, the KCE
has formulated a series of proposals for the possible inclusion of T1D in the reference
grids, in particular for the subgroup of T1D patients with no comorbidities for which
the excess mortality is present but remains low (Van Ginckel et al., 2024). Moreover,
it is logical to focus primarily on pathologies that affect young people, as they are the
ones most likely to take out life insurance. The main difficulty, however, seems to be
the lack of nationwide registry for these diseases. An appropriate source of reliable
and representative data must thus be identified to perform actuarial calculations
assessing the actual costs of these extensions beyond cancer.

In addition to establishing cancer-specific waiting periods which reflect different
survival rates and risk profiles, insurers are encouraged to develop tailored insurance
products for cancer survivors. Furthermore, policymakers should support legislative
measures to prevent discrimination against cancer survivors in the financial sector.
Addressing these recommendations can lead to a more inclusive and equitable system
for cancer survivors while ensuring the sustainability and fairness of insurance
practices. The present PhD thesis contributes to the ongoing dialogue on balancing
individual rights with operational requirements, providing a foundation for future
research and policy development in this critical area.
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Appendix A
A.1 Development of 𝑒𝜏11(𝑡 ; 𝑧)

This appendix shows how Eq. (4.8) introduced in Chapter 4 is obtained.

Assuming 𝜏 > 𝑡 , and 𝜏 and 𝑡 are integers, we have

𝑒𝜏11 (𝑡 ; 𝑧) =
∫ 𝜏

𝑡

𝑝11 (𝑡,𝑢; 𝑧)d𝑢 (A.1)

=

𝜏−𝑡−1∑︁
𝑘=0

∫ 𝑡+𝑘+1

𝑡+𝑘
𝑝11 (𝑡,𝑢; 𝑧)d𝑢 (A.2)

=

𝜏−𝑡−1∑︁
𝑘=0

∫ 𝑡+𝑘+1

𝑡+𝑘
𝑝11 (𝑡, 𝑡 + 𝑘 ; 𝑧)𝑝11 (𝑡 + 𝑘,𝑢; 𝑧 + 𝑘)d𝑢 (A.3)

=

𝜏−𝑡−1∑︁
𝑘=0

𝑝11 (𝑡, 𝑡 + 𝑘 ; 𝑧)︸           ︷︷           ︸
(1)

∫ 𝑡+𝑘+1

𝑡+𝑘
𝑝11 (𝑡 + 𝑘,𝑢; 𝑧 + 𝑘)d𝑢︸                                ︷︷                                ︸

(2)

(A.4)

The terms (1) and (2) in Eq. (A.4) are developed below.

(1) 𝑝11 (𝑡, 𝑡 + 𝑘 ; 𝑧) = exp
(
−

∫ 𝑡+𝑘

𝑡

𝛼12 (𝑢; 𝑧 + 𝑢 − 𝑡)d𝑢
)

(A.5)

= exp

(
−
𝑘−1∑︁
𝑙=0

∫ 𝑡+𝑙+1

𝑡+𝑙
𝛼12 (𝑢; 𝑧 + 𝑢 − 𝑡)d𝑢

)
(A.6)

= exp

(
−
𝑘−1∑︁
𝑙=0

∫ 𝑡+𝑙+1

𝑡+𝑙
𝛼12 (𝑡 + 𝑙 ; 𝑧 + 𝑙)d𝑢

)
(A.7)

= exp

(
−
𝑘−1∑︁
𝑙=0

𝛼12 (𝑡 + 𝑙 ; 𝑧 + 𝑙)
)

(A.8)

(2)
∫ 𝑡+𝑘+1

𝑡+𝑘
𝑝11 (𝑡 + 𝑘,𝑢; 𝑧 + 𝑘)d𝑢 =

∫ 𝑡+𝑘+1

𝑡+𝑘
exp

(
−

∫ 𝑢

𝑡+𝑘
𝛼12 (𝑢; 𝑧 + 𝑢 − 𝑡)d𝑠

)
d𝑢 (A.9)
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=

∫ 𝑡+𝑘+1

𝑡+𝑘
exp

(
−

∫ 𝑢

𝑡+𝑘
𝛼12 (𝑡 + 𝑘 ; 𝑧 + 𝑘)d𝑠

)
d𝑢

(A.10)

=

∫ 𝑡+𝑘+1

𝑡+𝑘
exp

(
− 𝛼12 (𝑡 + 𝑘 ; 𝑧 + 𝑘) (𝑢 − 𝑡 − 𝑘)

)
d𝑢

(A.11)

=


exp

(
− 𝛼12 (𝑡 + 𝑘 ; 𝑧 + 𝑘) (𝑢 − 𝑡 − 𝑘)

)
−𝛼12 (𝑡 + 𝑘 ; 𝑧 + 𝑘)


𝑡+𝑘+1

𝑡+𝑘
(A.12)

=

1 − exp
(
− 𝛼12 (𝑡 + 𝑘 ; 𝑧 + 𝑘)

)
𝛼12 (𝑡 + 𝑘 ; 𝑧 + 𝑘)

(A.13)

Hence,

𝑒𝜏11 (𝑡 ; 𝑧) =
𝜏−𝑡−1∑︁
𝑘=0

exp

(
−
𝑘−1∑︁
𝑙=0

𝛼12 (𝑡 + 𝑙 ; 𝑧 + 𝑙)
)

︸                             ︷︷                             ︸
(1)

1 − exp
(
− 𝛼12 (𝑡 + 𝑘 ; 𝑧 + 𝑘)

)
𝛼12 (𝑡 + 𝑘 ; 𝑧 + 𝑘)︸                                ︷︷                                ︸

(2)

. (A.14)

A.2 Conditional one-year observed survival probability

This appendix details the calculation of the conditional one-year observed survival
probabilities introduced in Chapter 5.

A.2.1 Observed survival and hazard

From the relation between cumulative hazard for all cause death, Λ, follows the
observed survival, OS:

𝑂𝑆 (𝑡) = exp (−Λ(𝑡)) = exp
(
−

∫ 𝑡

0
𝜆(𝑢)𝑑𝑢

)
, (A.15)

with 𝜆(𝑢) the hazard at time 𝑢.
Conditional one-year OS at time 𝑡 can be obtained from Eq. (A.15) by integrating

only over the interval [𝑡, 𝑡 + 1]:

𝑂𝑆 (𝑡, 𝑡 + 1) = exp
(
−

∫ 𝑡+1

𝑡

𝜆(𝑢)𝑑𝑢
)
. (A.16)

To calculate this integral in practice, numerical integration can be applied on a set of
time values, say with a step of 0.01 year.
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A.2.2 Flexible parametric model for the hazard

The hazard as a continuous function of survival time was obtained from a flexible
parametric model (fpm) using the mexhaz function from the R package mexhaz
(Charvat and Belot, 2021).

A.2.3 Predicted observed survival

The observed survival at a given time 𝑡 , can be obtained from numerical integration
of Eq. (A.15):

𝑂𝑆 (𝑡) = exp

(
−
𝑁𝑡−1∑︁
𝑖=0

𝜆(𝑡𝑖 ) (𝑡𝑖+1 − 𝑡𝑖 )
)
= exp

(
−
𝑁𝑡−1∑︁
𝑖=0

𝜆(𝑡𝑖 )Δ𝑡
)
= exp

(
−Λ̃(𝑡)

)
, (A.17)

when the [0, 𝑡] interval is split in 𝑁𝑡 intervals of width Δ𝑡 (𝑡0 = 0, 𝑡1 = Δ𝑡, 𝑡2 =

2Δ𝑡, . . . , 𝑡𝑁𝑡
= 𝑡).

To obtain a curve of the observed survival at a set of time values (say from 0 to 10
years in steps of Δ𝑡 = 0.01 year, so 1000 data points), the vector of the corresponding
cumulative hazards, Λ̃, calculated via numerical integration is needed:

OS = exp(−Λ̃). (A.18)

The cumulative hazard vector can be calculated from the estimated regression co-
efficients via matrix multiplication. Let X be the design matrix (𝑁𝑡 lines, each line
corresponds with a time value) for the needed linear combinations of estimated re-
gression coefficients, 𝜷 , at the log(𝜆(𝑡)) scale. The estimated log(𝝀) vector and its
covariance matrix at each time points equals:

log(𝝀) = X𝜷 (A.19)∑︁
log(𝝀)

= X
∑︁

𝜷

X𝑇 . (A.20)

So:

𝝀 = exp (X𝜷) (A.21)∑︁
𝝀

= J𝝀
∑︁

𝜷

J𝝀𝑇 , (A.22)

with J𝝀 the Jacobian matrix J𝝀 = 𝑑𝑖𝑎𝑔(exp (X𝜷)).
The cumulative hazard at all time points is easily obtained by multiplying with a

upper triangular matrix 𝑻 (with 1’s on the diagonal):

Λ̃ = Δ𝑡 · 𝝀𝑇T (A.23)
∑︁

�̃�

= (Δ𝑡)2 T𝑇
∑︁
𝝀

T. (A.24)
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The variances of the cumulative hazards are the diagonal elements of covariance
matrix, which allows to construct an asymptotic normal confidence interval (CI).

From Eq. (A.18), it follows:

OS = exp
(
−�̃�

)
(A.25)∑︁

OS

= JOS

∑︁

�̃�

JOS
𝑇 . (A.26)

An asymptotic CI on the obtained survival can be obtained by transforming the CI on
the cumulative hazard.

A.2.4 Predicted conditional one-year observed survival

To obtain the conditional one-year observed survival at each time point 𝑡𝑖 , the cu-
mulative hazard over only the next 1 year interval [𝑡𝑖 , 𝑡𝑖 + 1] is needed. This can be
achieved by creating an upper triangular matrix, Tc, for which the number of 1’s in
each row is limited up to the next 1

Δ𝑡 columns. Take as an example Δ𝑡 = 0.2 and
consider the first six lines and the first 10 columns:

Tc =



1 1 1 1 1 0 0 0 0 0
0 1 1 1 1 1 0 0 0 0
0 0 1 1 1 1 1 0 0 0
0 0 0 1 1 1 1 1 0 0
0 0 0 0 1 1 1 1 1 0
0 0 0 0 0 1 1 1 1 1


. (A.27)

The cumulative hazard for the conditional one-year OS becomes:

Λ̃𝑐 = Δ𝑡 · T𝑐𝝀 (A.28)
∑︁

�̃�

= (Δ𝑡)2 T𝑐
∑︁
𝝀

T𝑇𝑐 . (A.29)

The rest is similar to the observed survival in the previous subsection.
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