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SIR model

I A classic epidemiological model

I Applicable to many disease outbreaks

I 3 groups of individuals:

1. Susceptible: healthy individuals but susceptible to the disease.
At t0, S = entire population since no one is immune to the virus

2. Infectious

3. Recovered (or removed): contaminated individuals but who
have either recovered or died. They are not infectious anymore
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SIR model

As the virus progresses in the population:

I S decreases when individuals are contaminated and move to I

I As people recover or die, they go from I to R
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SIR model

To model the outbreak we need to describe the change in each
group, parameterised by:

I β (infection rate) which controls S → I

I γ (removal rate) which controls I → R
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SIR model

dS

dt
= −βIS

N

dI

dt
=
βIS

N
− γI

dR

dt
= γI

I Eq. 1: S decreases with newly infected individuals

I Eq. 2: I increases with newly infected individuals, minus
infected people who recovered

I Eq. 3: R increases with the number of individuals who were
infectious and who either recovered or died
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SIR model

In R:

SIR <- function(time, state, parameters) {

par <- as.list(c(state, parameters))

with(par, {

dS <- -beta * I * S / N

dI <- beta * I * S / N - gamma * I

dR <- gamma * I

list(c(dS, dI, dR))

})

}
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Fitting a SIR model

To fit the model to the data we need to find the optimal values of
our parameters that minimise the sum of the squared differences
between I (t) and the corresponding number of cases as predicted by
our model Î (t):

RSS(β, γ) =
∑
t

(
I (t)− Î (t)

)2
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Fitting a SIR model
In R, with ode() (for ordinary differential equations) and optim():

library(deSolve)

RSS <- function(parameters) {

names(parameters) <- c("beta", "gamma")

out <- ode(y = init, times = Day,

func = SIR, parms = parameters)

fit <- out[, 3]

sum((Infected - fit)^2)

}

Opt <- optim(c(0.5, 0.5), # find the optimal values

RSS, # that give the smallest RSS

method = "L-BFGS-B", # start with values of 0.5

lower = c(0, 0), # and constrain them to

upper = c(1, 1) # the interval 0 to 1.0

)
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Data

I Dataset of John Hopkins (collection of 12 resources), via
{coronavirus} R package

I Data from Feb. 4 (1st confirmed case) until March 30 because:

I What is needed are currently infected persons (cumulative
infected minus the removed, i.e. recovered or dead)

I But numbers of recovered persons are hard to obtain and
probably underestimated (underreporting bias)

I We thus consider the cumulative number of infected people until
the number of recovered individuals becomes non-negligible

I Which I assumed was ±14 days1 after lockdown

I Analyses done here are still valuable to see how the virus would
have evolved

1Average duration after which COVID-19 patients are considered as cured.
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Application to Belgium
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COVID−19 fitted vs observed cumulative incidence, Belgium
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Reproduction number R0

I Model fits well to the observed data, so we can compute the
reproduction number R0 as

R0 =
β

γ

I Gives the average number of healthy people that get infected
per number of sick (infectious) people

I The larger the R0, the harder it is to control the epidemic and
the higher the probability of a pandemic
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Reproduction number R0

In R:

Opt_par <- setNames(Opt$par, c("beta", "gamma"))

Opt_par

## beta gamma

## 0.5841185 0.4158816

R0 <- as.numeric(Opt_par[1] / Opt_par[2])

R0

## [1] 1.404531

I On average in Belgium, 1.4 persons were contaminated for
each infected person for the period considered
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Predictions

I No health intervention and fixed R0:
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Predictions

I In log scale:
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More summary statistics
# peak of pandemic

fit[fit$I == max(fit$I), c("Date", "I")]

## Date I

## 89 2020-05-02 531000.4

# severe cases

max(fit$I) * 0.2

## [1] 106200.1

# cases with need for intensive care

max(fit$I) * 0.06

## [1] 31860.03

# deaths with supposed 4.5% fatality rate

max(fit$I) * 0.045

## [1] 23895.02
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Additional considerations

I Previous figures must be taken with extreme caution:

I Based on rather unrealistic assumptions:

I no public health interventions

I fixed reproduction number R0

I Other assumptions (more realistic?) for severe cases, ICU and
fatality rates

I Data quality

I BUT previous pandemics (e.g., Spanish & swine flu) showed
that high number are not impossible...
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Improvements

I SEIR model: ≈ SIR but infected people I are divided into:

1. E for Exposed/infected but asymptomatic

2. I for Infected and symptomatic

I Modelling the epidemic trajectory using 2 log-linear models:2

1. one to the growth phase (before the peak)

2. one to the decay phase (after the peak)

allowing to estimate doubling and halving times

I Estimate the current effective reproduction number Re on a
day-by-day basis3

I More sophisticated projections4

2See {incidence} R package.
3See {EpiEstim} R package.
4See {projections} R package.
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This talk is based on & complements:

I LIDAM Report (link)

I Blog (link)

Thanks!

Questions?
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https://uclouvain.be/fr/instituts-recherche/lidam/actualites/how-can-we-predict-the-evolution-of-covid-19-in-belgium.html
https://www.statsandr.com/blog/covid-19-in-belgium/

